II. THE ROLE OF ANTHROPOGENIC WARMING IN 2015
CENTRAL EUROPEAN HEAT WAVES
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Station-based observations and bias-corrected model simulations show that the frequency of
short-term heat waves in central Europe has increased, albeit quantitative estimates of risk ratios
differ considerably between methods.

Summer 2015 in Europe. The summer 2015 in Europe
was highly unusual, as persistent heat and dryness
prevailed in large parts of the continent. In central
and eastern Europe, a combination of record-low
seasonal rainfall (Orth et al. 2016) and record-high
monthly July/August temperatures were observed
over an area stretching from France to western Russia
(Supplemental Fig. S11.1). The anomalous tempera-
tures were caused by a sequence of four intense heat
waves that struck the region from the end of June
to early September (e.g., Fig. 11.1a). It is precisely
the few-day heat that causes problems with human
health, especially when combined with high humidity
(McGregor et al. 2010). We analyze seasonal maxima
of 3-day mean temperature (Tair,, ,,,,) and seasonal
maxima of 3-day daily maximum wet bulb tempera-
ture (WBTX,4 ,.0)> @ measure of human thermal dis-
comfort that combines temperature and humidity and
is a proxy for heat stress on the human body (Fischer
and Knutti 2013; Sherwood and Huber 2010).

The series of heat waves began with a strongly
meandering jet stream, that is summertime “omega-
blocking” (Dole et al. 2011), and the advection of very
warm subtropical air into central and western Europe
(Supplemental Fig. S11.1). Later in the season, the
jet stream was displaced to the north, so that stable
high-pressure systems could prevail over central and
eastern Europe bringing heat there. The first heat
wave in early July was hence most pronounced in
western parts of the continent, while south-central
and east-central Europe experienced the highest

temperatures in the subsequent heat waves later in
the season (Fig. 11.1b).

Anomalies in the hottest 3-day mean temperature
reached up to +6°C relative to climatology (Figs.
11.1¢,d), and temperature records were broken, in-
cluding nationwide records (Kitzingen, Germany:
40.3°C; https://weather.com/news/climate/news/eu-
rope-heat-wave-poland-germany-czech-august-2015),
various station records stretching from France to
the Balkan countries and southern Sweden (www
.meteofrance.fr/actualites/26913226-episode
-de-tres-fortes-chaleurs-en-france), nighttime tem-
peratures (Vienna, Austria: 26.9°C), record 3-day
mean temperatures across central Europe (Fig. 11.1e),
and inland water temperatures (e.g., Lake Constance).
Europe experienced the hottest August ever recorded
(NOAA 2016), and the entire summer season ranked
third after the unusual summers of persistent heat in
2003 and 2010 with hotspots in France and western
Russia, respectively (Barriopedro et al. 2011; Stott et
al. 2004). This extraordinary sequence of events raises
the question to what extent human-induced climate
change played a role in short-term heat waves beyond
natural climate variability.

A potential anthropogenic contribution to the
summer 2015 heat events had already been inves-
tigated in near-real time (www.climatecentral.org
/europe-2015-heatwave-climate-change), and in the
present paper we build upon and substantiate the
previous analysis. We investigate two diagnostics
(Tairyg . and WBTX,, ,..,) at four locations in long-

term station-based observational records and in a
large ensemble of consistently bias-corrected regional
climate model simulations.
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Methods and Data. First, we analyze long-term
observational data (115 years of data for each station)
from the ECA&D dataset (Klein Tank et al. 2002)
of four central and eastern European stations that
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Fig. 11.1. (a) Time series of 3-daily mean temperatures in summer 2015 at the Jena site (gray shading
denotes t2-0 deviations relative to long-term interannual variability). (b) Day of seasonal temperature
record in summer 2015. (c) Time series of seasonal maximum of 3-day mean temperatures (Tair,,,.,) at
the Jena site (summer 2015 is marked by a red dot). (d) Anomalies in Tair,, ., over Europe in summer
2015 relative to 1981-2010. (e) Difference to previous heat records (1950-2014) in Tair3d,max in the
EOBS dataset. Positive differences indicate a new heat record in JJA 2015. (f),(g) Return time plots of
GEY fits for Tair,, ., and WBTX,, ..., respectively, at the Jena site. Red (orange) lines indicate the
fit for 2015 climate, dark-blue (light-blue) lines indicate the fit for 1901 climate for a smoothed global
mean temperature covariate (smoothed local summer temperature covariate).
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were affected by the heat waves in summer 2015
(Table 11.1), using data from 1901 onward. For each
station, annual time series of Tair,, ,,,,and WBTX,,
max are calculated for July-August. WBTX,, ., is
derived from daily maximum air temperature and
vapor pressure (computed from relative humidity
and daily mean temperature; www.srh.noaa.gov
/epz/tn=wxcalc_rh) using an iterative procedure
based on the psychrometric equation (Sullivan and
Sanders 1974). Subsequently, generalized extreme
value (GEV) statistical models are fitted to the data
(Coles 2001) excluding the year 2015, using two
different assumptions about changes in climate:

1) A “local” station-based covariate to the location
parameter of the GEV (21-year smoothed local sum-
mer temperatures, SLST) as a proxy for any changes
to local climate;

2) A “global” covariate to the location parameter
(21-year smoothed global mean temperatures, SGMT)
as a proxy for anthropogenic influence on climate
(van Oldenborgh et al. 2012).

To avoid overfitting the relatively low number
of data points, no dependence in the scale or shape
parameter is assumed. Probability ratios (PR) based
on the GEV as a metric to quantify human-induced
change in the odds of extreme events (PR = p,yr/Pxars
Fischer and Knutti 2015) were obtained by calculating
the probability of an event as warm or warmer than

the observed 2015-event in a 2015-climate (p,yr), and
in 1901 as a proxy for preindustrial climate.

Second, a model ensemble-based assessment us-
ing the global general circulation model HadAM3P
(1.875° x 1.25° x 15-min resolution) and a dynami-
cally downscaled regional variant (HadRM3P, 0.44° x
0.44° x 5-min resolution) is conducted to complement
the empirical analysis (see Massey et al. 2015 for all
details regarding the model setup). Initial condition
ensembles are generated for an anthropogenic sce-
nario (ANT, n = 2286), in which the model is driven
by observed (2015) sea surface temperatures (SSTs)
and anthropogenic forcings in atmosphere-only mode
for 1 year at a time (starting 1 December; Massey
et al. 2015); and a natural scenario (NAT, n = 4414)
with all anthropogenic forcings (i.e., greenhouse
gases, aerosols, halocarbons, and ozone) set to pre-
industrial levels and 11 different estimates of natural
SSTs (Schaller et al. 2014). For each of the four loca-
tions (centered over a 1° x 1° grid cell), a resampling
bias correction strategy based on an observational
constraint is applied to the model ensemble (Sippel
et al. 2016) because the raw model output is notori-
ously too hot and dry (Black et al. 2015; Massey et al.
2015), severely compromising attribution statements
(Supplemental Fig. S11.2). The seasonal maximum
21-day average temperature from the E-OBS da-
taset (Haylock et al. 2008) is used as a resampling

Table I1.1. Location of meteorological stations and probability ratios estimated from
observed and simulated data. Very large PR with a lower bound (5% confidence interval)
exceeding 10 are reported

as >10. PR from the model output are given as 5th to 95th percentile of 100 bootstrapped
replicates (n = 1000). A PR range exceeding one would be significant at 95% confidence under
a one-sided test. PR for the original model simulations (i.e., non-bias corrected) are indicated
for comparison only. *The observed De Bilt series contains a well-known inhomogeneity

in 1950, so the homogenized series from KNMI was used instead. **Humidity data was not
available for Vienna and Minsk in the ECA&D dataset for the year 2015.

Station De Bilt* Jena Minsk Vienna
Country Netherlands Germany Belarus Austria
Location 52°06’N, 5°II’E 50°55.5’N, 11°35’E 53°52’N, 27°32’E 48°14'N, 16°2I'E
Tairyy na, 205 (°C) 25.2 28.5 273 29.1

PR adrmM3P, BC2nom 1.2-14 1.1-2.5 1.7-2.5 1.8-2.9
PRjagrM3P, BC-anom, obs. trend | 4.7-7.5 4.1-87 34-52 >10
PReoss, cev-amt >10 >10 >10 >0
WBT,; .. (2015, °C) | 229 24.3 nfa® nfa®

PR adrM3p, BC-anom 1.3-1.8 1.5-3.1 n/a** n/a**

PR adrM3P, BC-anom, obs. trend >10 2.7-7.7 n/a** n/a**
PReoss, cev-amT >10 >8.6 n/a** n/a**
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constraint, and a percentile-based transfer func-
tion is calibrated for each station separately on the
1986-2010 climatology using an identical model setup
(Massey et al. 2015). Subsequently, both natural and
anthropogenic simulations are resampled using the
derived relationship (Sippel et al. 2016). In contrast to
widely used methods like quantile-quantile mapping,
resampling retains the full multivariate structure and
physical consistency of the model output but reduces
the available ensemble size and chooses colder and
wetter ensemble members, therefore alleviating the
hot and dry bias (Sippel et al. 2016). In the context
of event attribution, it is applied for the first time in
this paper (Figs. 11.2a-d; see next section). To avoid
potential mean biases due to station location, the
mean of the resampled ensemble is adjusted to the
station mean (Supplemental Figs. S11.2¢,d). Results
are demonstrated exemplarily for one station (Jena),
and probability ratios are reported for all stations.

Results and Discussion.
The statistical analysis of
estimated return times
of Tair,y ., reveals that
2015-like heat events occur
in present day climate
approximately every 27
years in Jena with the one-
sided 5% lower confidence
bound at 16 years (Fig. 11.1).
Including both the local
and global climate change
covariates into the GEV fit
demonstrates a profound
increase in return times of
those types of events relative
to earlier years for both Tair,,
max ald WBTX,,; . in Jena
(Figs. 11.1f,g) and all other
locations with probability
ratios typically exceeding
a value of 10 (Table 11.1).
The intensity of heat waves
increases by about 3°C in
Tairsy ,,, but only 1.1°C in
WBTX,q . (Figs. 11.1f,g).
In spite of this difference, the
increase in the probability
ratio is similar.
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Fic. 11.2. (a),(c) Correlation between 21-day seasonal maximum temperature
(observational constraint for resampling bias correction) and impact-related
quantities (Tair,, ., and WBTX;, ..., respectively). Pink dots correspond to

A similar analysis is 1986-2010, the period used for calibration of the bias correction resampling
conducted in a very large function. (b),(d) Return time plots for original and bias-corrected model output
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tions. The 21-day resampling constraint considerably
improves the representation of short-term heat waves
by avoiding physically implausible simulations (Figs.
11.2a-d) and improving the simulated variability of
heat waves (Supplemental Figs. S11.2¢,d). The corre-
lation structure between the temperature constraint
and short-term heat stress (WBTX,g ,,,,) in the
observations is reproduced in the resampled model
ensemble but not in the original model ensemble
(Figs. 11.2a,c). This indicates that robust attribution
statements for impact-related, and thus multivariate
quantities (such as WBTX,, ,..,), require a physically
consistent bias correction of model output.
Consistent with the observations, the model-based
assessment shows a shift in the return periods toward
more frequent and more pronounced summer heat
stress (Fig. 11.2b) in all locations (Table 11.1) and
both bias-corrected and original simulations. The
probability ratios derived from the bias-corrected
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model ensembles range from 1.1 to 2.9 (Tairyy .,)
for the four locations (PR = 1.3 — 3.1 for WBTXj ..«
in Jena and De Bilt), depending on the magnitude
of the 2015 event, the model-simulated warming,
and interannual variability. These estimates are thus
lower than those estimated from the observations
but can be largely explained by method- and data-
related differences. For instance, the statistical
method assumes that the trend is caused fully by
anthropogenic factors, while the model analysis is
based on a “real counterfactual” scenario but tends
to underestimate warming trends in temperature
extremes in Europe (Min et al. 2013). The mean
observed change across all locations between 2015
and 1901 of 3.1°C (Tair,, ,..,) and 2.2°C (WBTX,,
may) 18 much larger than the original (+1.1°C in Tair,,
max ad +0.5°C in WBTX,, ....) and bias corrected
(+0.9°Cin Tairyy ,,,, and +0.5°C in WBTX,, ,,..,) model
simulations. Hence, replacing the model-simulated
warming by the observed change between 1901 and
2015 causes roughly a tripling of probability ratios
for the bias-corrected simulations at all locations
(e.g., 3.4-8.7 for Tairy, ., and 2.7 to exceeding
10 for WBTX,y ... cf., Table 11.1). Furthermore,
uncertainties due to event selection (Christiansen
2015), dependence on the spatial and temporal scale
(Angélil et al. 2014), high nonlinearity in attribution
metrics such as the probability ratio (Supplemental
Fig. S11.2), and a slightly higher variability on sub-
monthly time scales in the model simulations than
in the observations despite bias correction further
contribute to model-data discrepancies and variability
in the presented estimates of the probability ratios.

Conclusion. In conclusion, the multimethod analysis
applied in this paper provides consistent evidence that
human-induced climate change has contributed to the
increase in the frequency and intensity of short-term
heat waves and heat stress such as the central and
eastern Europe 2015 event.

However, quantitative estimates of the risk ratio
at local scales can differ widely depending on the
exact methodologies applied, thus highlighting large
method- and data-related uncertainties. In this study,
due to the large discrepancy between observed and
modeled trends in temperature extremes, the model-
estimated probability ratios are lower than those
estimated from the observations.
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