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11. THE ROLE OF ANTHROPOGENIC WARMING IN 2015 
CENTRAL EUROPEAN HEAT WAVES

SebaStian Sippel, Friederike e. l. OttO, Milan Flach, and Geert Jan van OldenbOrGh 
 

Summer 2015 in Europe. The summer 2015 in Europe 
was highly unusual, as persistent heat and dryness 
prevailed in large parts of the continent. In central 
and eastern Europe, a combination of record-low 
seasonal rainfall (Orth et al. 2016) and record-high 
monthly July/August temperatures were observed 
over an area stretching from France to western Russia 
(Supplemental Fig. S11.1). The anomalous tempera-
tures were caused by a sequence of four intense heat 
waves that struck the region from the end of June 
to early September (e.g., Fig. 11.1a). It is precisely 
the few-day heat that causes problems with human 
health, especially when combined with high humidity 
(McGregor et al. 2010). We analyze seasonal maxima 
of 3-day mean temperature (Tair3d, max) and seasonal 
maxima of 3-day daily maximum wet bulb tempera-
ture (WBTX3d, max), a measure of human thermal dis-
comfort that combines temperature and humidity and 
is a proxy for heat stress on the human body (Fischer 
and Knutti 2013; Sherwood and Huber 2010).

The series of heat waves began with a strongly 
meandering jet stream, that is summertime “omega-
blocking” (Dole et al. 2011), and the advection of very 
warm subtropical air into central and western Europe 
(Supplemental Fig. S11.1). Later in the season, the 
jet stream was displaced to the north, so that stable 
high-pressure systems could prevail over central and 
eastern Europe bringing heat there. The first heat 
wave in early July was hence most pronounced in 
western parts of the continent, while south-central 
and east-central Europe experienced the highest 

temperatures in the subsequent heat waves later in 
the season (Fig. 11.1b). 

Anomalies in the hottest 3-day mean temperature 
reached up to +6°C relative to climatology (Figs. 
11.1c,d), and temperature records were broken, in-
cluding nationwide records (Kitzingen, Germany: 
40.3°C; https://weather.com/news/climate/news/eu-
rope-heat-wave-poland-germany-czech-august-2015), 
various station records stretching from France to 
the Balkan countries and southern Sweden (www 
.meteofrance.fr/actua l ites/26913226-episode 
-de-tres-fortes-chaleurs-en-france), nighttime tem-
peratures (Vienna, Austria: 26.9°C), record 3-day 
mean temperatures across central Europe (Fig. 11.1e), 
and inland water temperatures (e.g., Lake Constance). 
Europe experienced the hottest August ever recorded 
(NOAA 2016), and the entire summer season ranked 
third after the unusual summers of persistent heat in 
2003 and 2010 with hotspots in France and western 
Russia, respectively (Barriopedro et al. 2011; Stott et 
al. 2004). This extraordinary sequence of events raises 
the question to what extent human-induced climate 
change played a role in short-term heat waves beyond 
natural climate variability.

A potential anthropogenic contribution to the 
summer 2015 heat events had already been inves-
tigated in near–real time (www.climatecentral.org 
/europe-2015-heatwave-climate-change), and in the 
present paper we build upon and substantiate the 
previous analysis. We investigate two diagnostics 
(Tair3d, max and WBTX3d, max) at four locations in long-
term station-based observational records and in a 
large ensemble of consistently bias-corrected regional 
climate model simulations.

Methods and Data. First, we analyze long-term 
observational data (115 years of data for each station) 
from the ECA&D dataset (Klein Tank et al. 2002) 
of four central and eastern European stations that 
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Fig. 11.1. (a) Time series of 3-daily mean temperatures in summer 2015 at the Jena site (gray shading 
denotes ±2-σ deviations relative to long-term interannual variability). (b) Day of seasonal temperature 
record in summer 2015. (c) Time series of seasonal maximum of 3-day mean temperatures (Tair3d,max) at 
the Jena site (summer 2015 is marked by a red dot). (d) Anomalies in Tair3d,max over Europe in summer 
2015 relative to 1981–2010. (e) Difference to previous heat records (1950–2014) in Tair3d,max in the 
EOBS dataset. Positive differences indicate a new heat record in JJA 2015. (f),(g) Return time plots of 
GEV fits for Tair3d, max and WBTX3d, max, respectively, at the Jena site. Red (orange) lines indicate the 
fit for 2015 climate, dark-blue (light-blue) lines indicate the fit for 1901 climate for a smoothed global 
mean temperature covariate (smoothed local summer temperature covariate).



S53DECEMBER 2016AMERICAN METEOROLOGICAL SOCIETY |

were affected by the heat waves in summer 2015 
(Table 11.1), using data from 1901 onward. For each 
station, annual time series of Tair3d, max and WBTX3d, 

max are calculated for July–August. WBTX3d, max is 
derived from daily maximum air temperature and 
vapor pressure (computed from relative humidity 
and daily mean temperature; www.srh.noaa.gov 
/epz/?n=wxcalc_rh) using an iterative procedure 
based on the psychrometric equation (Sullivan and 
Sanders 1974). Subsequently, generalized extreme 
value (GEV) statistical models are fitted to the data 
(Coles 2001) excluding the year 2015, using two 
different assumptions about changes in climate: 

1) A “local” station-based covariate to the location 
parameter of the GEV (21-year smoothed local sum-
mer temperatures, SLST) as a proxy for any changes 
to local climate;

2) A “global” covariate to the location parameter 
(21-year smoothed global mean temperatures, SGMT) 
as a proxy for anthropogenic influence on climate 
(van Oldenborgh et al. 2012). 

To avoid overfitting the relatively low number 
of data points, no dependence in the scale or shape 
parameter is assumed. Probability ratios (PR) based 
on the GEV as a metric to quantify human-induced 
change in the odds of extreme events (PR = pANT/pNAT; 
Fischer and Knutti 2015) were obtained by calculating 
the probability of an event as warm or warmer than 

the observed 2015-event in a 2015-climate (pANT), and 
in 1901 as a proxy for preindustrial climate.

Second, a model ensemble-based assessment us-
ing the global general circulation model HadAM3P 
(1.875° × 1.25° × 15-min resolution) and a dynami-
cally downscaled regional variant (HadRM3P, 0.44° × 
0.44° × 5-min resolution) is conducted to complement 
the empirical analysis (see Massey et al. 2015 for all 
details regarding the model setup). Initial condition 
ensembles are generated for an anthropogenic sce-
nario (ANT, n = 2286), in which the model is driven 
by observed (2015) sea surface temperatures (SSTs) 
and anthropogenic forcings in atmosphere-only mode 
for 1 year at a time (starting 1 December; Massey 
et al. 2015); and a natural scenario (NAT, n = 4414) 
with all anthropogenic forcings (i.e., greenhouse 
gases, aerosols, halocarbons, and ozone) set to pre-
industrial levels and 11 different estimates of natural 
SSTs (Schaller et al. 2014). For each of the four loca-
tions (centered over a 1° × 1° grid cell), a resampling 
bias correction strategy based on an observational 
constraint is applied to the model ensemble (Sippel 
et al. 2016) because the raw model output is notori-
ously too hot and dry (Black et al. 2015; Massey et al. 
2015), severely compromising attribution statements 
(Supplemental Fig. S11.2). The seasonal maximum 
21-day average temperature from the E-OBS da-
taset (Haylock et al. 2008) is used as a resampling 

Table 11.1. Location of meteorological stations and probability ratios estimated from 
observed and simulated data. Very large PR with a lower bound (5% confidence interval) 
exceeding 10 are reported 
as >10. PR from the model output are given as 5th to 95th percentile of 100 bootstrapped 
replicates (n = 1000). A PR range exceeding one would be significant at 95% confidence under 
a one-sided test. PR for the original model simulations (i.e., non-bias corrected) are indicated 
for comparison only. *The observed De Bilt series contains a well-known inhomogeneity 
in 1950, so the homogenized series from KNMI was used instead. **Humidity data was not 
available for Vienna and Minsk in the ECA&D dataset for the year 2015.

Station De Bilt* Jena Minsk Vienna

Country Netherlands Germany Belarus Austria

Location 52°06’N, 5°11’E 50°55.5’N, 11°35’E 53°52’N, 27°32’E 48°14’N, 16°21’E

Tair3d, max, 2015 (°C) 25.2 28.5 27.3 29.1

PRHadRM3P, BC-anom 1.2–1.4 1.1–2.5 1.7–2.5 1.8–2.9

PRHadRM3P, BC-anom, obs. trend 4.7–7.5 4.1–8.7 3.4–5.2 >10

PREOBS, GEV-GMT >10 >10 >10 >10

WBT3d, max (2015, °C) 22.9 24.3 n/a** n/a**

PRHadRM3P, BC-anom 1.3–1.8 1.5–3.1 n/a** n/a**

PRHadRM3P, BC-anom, obs. trend >10 2.7–7.7 n/a** n/a**

PREOBS, GEV-GMT >10 >8.6 n/a** n/a**
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constraint, and a percentile-based transfer func-
tion is calibrated for each station separately on the 
1986–2010 climatology using an identical model setup 
(Massey et al. 2015). Subsequently, both natural and 
anthropogenic simulations are resampled using the 
derived relationship (Sippel et al. 2016). In contrast to 
widely used methods like quantile–quantile mapping, 
resampling retains the full multivariate structure and 
physical consistency of the model output but reduces 
the available ensemble size and chooses colder and 
wetter ensemble members, therefore alleviating the 
hot and dry bias (Sippel et al. 2016). In the context 
of event attribution, it is applied for the first time in 
this paper (Figs. 11.2a–d; see next section). To avoid 
potential mean biases due to station location, the 
mean of the resampled ensemble is adjusted to the 
station mean (Supplemental Figs. S11.2c,d). Results 
are demonstrated exemplarily for one station (Jena), 
and probability ratios are reported for all stations.

Resu l t s  and D i scus s i on . 
The statistical analysis of 
est imated return t imes 
of Tair3d, ma x reveals that 
2015-like heat events occur 
i n  present  d ay c l i mate 
approximately ever y 27 
years in Jena with the one-
sided 5% lower confidence 
bound at 16 years (Fig. 11.1). 
Including both the local 
and global climate change 
covariates into the GEV fit 
demonstrates a profound 
increase in return times of 
those types of events relative 
to earlier years for both Tair3d, 

max and WBTX3d, max in Jena 
(Figs. 11.1f,g) and all other 
locations with probability 
ratios typically exceeding 
a value of 10 (Table 11.1). 
The intensity of heat waves 
increases by about 3°C in 
Tair3d, max but only 1.1°C in 
WBTX3d, max (Figs. 11.1f,g). 
In spite of this difference, the 
increase in the probability 
ratio is similar.

A simi lar ana lysis is 
conducted in a very large 
ensemble of model simula-

tions. The 21-day resampling constraint considerably 
improves the representation of short-term heat waves 
by avoiding physically implausible simulations (Figs. 
11.2a–d) and improving the simulated variability of 
heat waves (Supplemental Figs. S11.2c,d). The corre-
lation structure between the temperature constraint 
and short-term heat stress (WBTX3d, max) in the 
observations is reproduced in the resampled model 
ensemble but not in the original model ensemble 
(Figs. 11.2a,c). This indicates that robust attribution 
statements for impact-related, and thus multivariate 
quantities (such as WBTX3d, max), require a physically 
consistent bias correction of model output.

Consistent with the observations, the model-based 
assessment shows a shift in the return periods toward 
more frequent and more pronounced summer heat 
stress (Fig. 11.2b) in all locations (Table 11.1) and 
both bias-corrected and original simulations. The 
probability ratios derived from the bias-corrected 

Fig. 11.2. (a),(c) Correlation between 21-day seasonal maximum temperature 
(observational constraint for resampling bias correction) and impact-related 
quantities (Tair3d, max and WBTX3d, max, respectively). Pink dots correspond to 
1986–2010, the period used for calibration of the bias correction resampling 
function. (b),(d) Return time plots for original and bias-corrected model output 
for Tair3d, max and WBTX3d, max, respectively.
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model ensembles range from 1.1 to 2.9 (Tair3d, max) 
for the four locations (PR = 1.3 − 3.1 for WBTX3d, max 
in Jena and De Bilt), depending on the magnitude 
of the 2015 event, the model-simulated warming, 
and interannual variability. These estimates are thus 
lower than those estimated from the observations 
but can be largely explained by method- and data-
related differences. For instance, the statistical 
method assumes that the trend is caused fully by 
anthropogenic factors, while the model analysis is 
based on a “real counterfactual” scenario but tends 
to underestimate warming trends in temperature 
extremes in Europe (Min et al. 2013). The mean 
observed change across all locations between 2015 
and 1901 of 3.1°C (Tair3d, max) and 2.2°C (WBTX3d, 

max) is much larger than the original (+1.1°C in Tair3d, 

max and +0.5°C in WBTX3d, max) and bias corrected 
(+0.9°C in Tair3d, max and +0.5°C in WBTX3d, max) model 
simulations. Hence, replacing the model-simulated 
warming by the observed change between 1901 and 
2015 causes roughly a tripling of probability ratios 
for the bias-corrected simulations at all locations 
(e.g., 3.4–8.7 for Tair3d, max and 2.7 to exceeding 
10 for WBTX3d, max; cf., Table 11.1). Furthermore, 
uncertainties due to event selection (Christiansen 
2015), dependence on the spatial and temporal scale 
(Angélil et al. 2014), high nonlinearity in attribution 
metrics such as the probability ratio (Supplemental 
Fig. S11.2), and a slightly higher variability on sub-
monthly time scales in the model simulations than 
in the observations despite bias correction further 
contribute to model-data discrepancies and variability 
in the presented estimates of the probability ratios.

Conclusion. In conclusion, the multimethod analysis 
applied in this paper provides consistent evidence that 
human-induced climate change has contributed to the 
increase in the frequency and intensity of short-term 
heat waves and heat stress such as the central and 
eastern Europe 2015 event. 

However, quantitative estimates of the risk ratio 
at local scales can differ widely depending on the 
exact methodologies applied, thus highlighting large 
method- and data-related uncertainties. In this study, 
due to the large discrepancy between observed and 
modeled trends in temperature extremes, the model-
estimated probability ratios are lower than those 
estimated from the observations. 
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