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22. CLIMATE CHANGE AND EL NIÑO INCREASE 
LIKELIHOOD OF INDONESIAN HEAT AND DROUGHT

Andrew d. King, geert JAn vAn OldenbOrgh, And dAvid J. KArOly

Introduction. Indonesia experienced severe heat and 
drought throughout the dry season of 2015. The pe-
riod July–October saw extreme precipitation deficits 
and record-breaking hot temperatures (Figs. 22.1a,b). 
The combination of heat and drought contributed to 
fires across much of the country, which were associ-
ated with fatalities and were likely the worst since 
1997 (Huijnen et al. 2016). The fires had broader 
health impacts through increased prevalence of re-
spiratory problems (Koplitz et al. 2016). 

El Niño conditions in the central Pacific are 
strongly linked with seasonal precipitation deficits 
south of the equator in the dry season (Hendon 2003; 
Fig. 22.1c) and, to a lesser extent, warmer land tem-
peratures (Harger 1995; Fig. 22.1d). Previous strong El 
Niño events, such as 1997, were associated with severe 
drought conditions in Indonesia. Anthropogenic 
influences may also have played a role in this event. 
The relative influences of El Niño–Southern Oscilla-
tion (ENSO) and human-induced climate change are 
investigated here. 

Data and methods. To assess this current extreme 
event in the long-term context of a changing 
climate, it is desirable to have high-quality long-
term observational time series. It is also preferable 
to have gridded observations, when comparing with 
climate model output, at a moderate resolution, 
especially over Indonesia where larger grid boxes 
contain both land and ocean. Unfortunately, in 
many regions of the developing world such data do 
not exist. The use of temperature and precipitation 

data from a range of observation-based datasets were 
investigated, and ERA-Interim (1979–2015; Dee et 
al. 2011) was selected for use in this analysis. Other 
longer-running reanalyses and analyses, such as ERA-
20C (Poli et al. 2016) and CRU-TS3.23 (Harris et al. 
2014), were found to include inhomogeneities prior 
to the satellite era (1979 onwards). A long, relatively 
homogenous, precipitation series was obtained from 
the GPCC 1° V7 analysis (1901–2015) extended by 
the V5 monitoring analysis (Schneider et al. 2015).
Temperature and precipitation data were regridded 
onto a regular 2° grid and averaged over land boxes 
within the region 0°–11°S, 95°–141°E for July–October 
(time series shown in Supplemental Fig. S22.1). 
There is agreement in temperature trends between 
ERA-Interim and limited observational data from 
the public Global Historical Climatology Network-
Monthly database (Lawrimore et al. 2011) available 
since 1979 (Supplemental Fig. S22.2). The trends 
and connection to El Niño were also investigated 
in observational data. It was impossible to find a 
temperature series longer than the ERA-Interim 
series, as the station density is low, variability is small, 
and coastal effects make interpolation to the interiors 
of large islands doubtful. For further details on our 
observational analysis, see the online Supplemental 
Material.

The Niño-3.4 index was calculated from HadISST 
(Rayner et al. 2003) for July–December. Values of the 
Niño-3.4 index more than +0.83°C (1σ) above zero in 
the observations were deemed to be El Niño seasons. 
Applying this threshold to the climate models results 
in selecting 10% of the seasons due to a tendency 
toward lower Niño-3.4 variability in most models.

Model data were extracted from the CMIP5 
archive (Taylor et al. 2012) and evaluated for their 
performance in capturing observed temperature and 
precipitation variability. The model data processing 
followed the same regridding and subsequent mask-
ing as the reanalysis (the raw resolution of most 
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models used here is finer than 2°). July–October tem-
perature and precipitation averages over Indonesia 
and July–December Niño-3.4 index values were ex-
tracted. Simulations from the “historical” experiment 
(including natural and anthropogenic forcings for 
1861–2005) were compared with observation-based 
data over the common 1979–2005 period. To account 
for the shorter period over which the evaluation takes 
place, additional evaluation steps were included that 
test model ability to capture Indonesian climate 
variability and ENSO relationships (described in the 
Supplemental Material). Models with at least three 
historical simulations (listed in Supplemental Table 
S22.1) were tested for similarity to observational data.

The ten models that passed the evaluation were 
further analyzed. Equivalent Indonesian temperature 
and precipitation averages and Niño-3.4 index values 
were calculated from the historicalNat (natural 
forcings only for 1861–2005) and RCP8.5 (projected 
climate under a high greenhouse gas emissions 
scenario for 2006–30) simulations. 

The historical and equivalent RCP8.5 simulations 
were joined to form simulations included in an all-
forcings ensemble (2000–30), which were compared 

with a natural-forcings ensemble (1861–2005) using 
the historicalNat runs. These ensembles were then 
used to investigate the change in likelihood of extreme 
heat (above +0.7°C anomaly) and drought (below 
60% of average precipitation) in Indonesia due to 
anthropogenic climate change and El Niño–Southern 
Oscillation.

In addition, we estimated the change in magnitude 
of hot and dry July–October periods in Indonesia due 
to climate change and the El Niño conditions. See 
the online Supplemental Material for more details 
and the results.

Uncertainty in results was measured through 
boot s t rappi ng model  s i mu lat ions  (see  t he 
Supplemental Material). Results reported here are 
conservative 10th percentile estimates with best 
estimates in parentheses.

Results. 1) Attribution to anthropogenic influences: 
low rainfall extremes

Based on our model analysis, precipitation 
deficits like those experienced during July–October 
2015 in Indonesia were made at least 37% (best 
estimate: 100%) more likely due to anthropogenic 

Fig. 22.1. (a) Precipitation and (b) temperature anomaly in Jul–Oct 2015 relative to a 1979–2005 climatological 
average in ERA-Interim. The box in (a) denotes the region of study. Detrended area-average (c) precipitation 
and (d) temperature anomalies for the boxed region from 1979–2015 in ERA-Interim plotted with average 
Jul–Dec Niño-3.4 index. Spearman rank correlation coefficients are shown and 2016 is marked (red crosses). 
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climate change. This result is based on the models 
that passed our evaluation tests and adequately 
capture Indonesian climate variability and ENSO 
relationships. The significant increase in frequency 
of low rainfall totals in the all-forcings ensemble 
compared with the natural-forcings ensemble is 
consistent with the simulated reduction in July–
October mean precipitation. These results contrast 
previous attribution analyses of precipitation deficits 
in other parts of the world, such as Australia (King 
et al. 2014), Brazil (Otto et al. 2015), and Texas (Rupp 
et al. 2015) that found limited evidence of a strong 
anthropogenic influence.

The observational precipitation time series (for 
1901–2014) shows a downward trend in low extremes, 
albeit a nonsignificant trend (Fig. 22.2a), and no trend 

in mean July–October precipitation. The dry tail of 
the observations and the El Niño tail in the models 
agree well (Fig. 22.2a).

2) Attribution to anthropogenic influences: high 
temperature extremes

High temperatures like those observed in 2015 
do not occur in our natural-forcings ensemble (as 
indicated by all green crosses being below the 2015 
mark in Fig. 22.2c), but do exist in our all-forcings 
ensemble. Therefore, in our model-based analysis, the 
high temperatures are entirely attributable to anthro-
pogenic influence. The probability is also vanishingly 
small in the observations (Fig. 22.2c), even though we 
can only go back to 1979, which misses about 1/3 of 
the warming signal. We also did not separate out El 
Niño years in the observations due to the small num-

Fig. 22.2. (a),(b) The change in likelihood of dry Jul–Oct periods like 2015 in modeled and observed precipitation 
due to (a) anthropogenic influence and (b) ENSO. (c),(d) The same but for hot Jul–Oct periods like 2015. (a) 
Scaled observed precipitation in the current climate fitted to a Generalized Pareto Distribution (GPD) function 
that scales with the smoothed global mean temperature for 1901 (blue lines and symbols) and 2015 (red lines 
and symbols), including 95% confidence intervals. The crosses denote the observations shifted with fitted trend. 
The purple symbols denote El Niño seasons in the model-simulated current climate, green simulated El Niño 
seasons without anthropogenic forcings. (b) The same for El Niño (red observations, purple models) against 
neutral, using 2005 as an example neutral year (blue observations), and neutral plus La Niña (green models). 
(c) As in (a) but for temperature, fitted to a Gaussian distribution that shifts with the smoothed global mean 
temperature. The reanalysis only starts in 1979, which misses 1/3 of the heating. (d) As in (b) but for temperature.
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ber of samples. The warming trend in ERA-Interim 
can also be seen in longer observational time series, 
such as Jakarta (Siswanto et al. 2015).

3) Attribution to El Niño: low rainfall extremes
Given the strong ENSO relationship with Indonesian 
dry-season precipitation (Fig. 22.1c) and the strong 
El Niño of 2015–16, it is expected that the El Niño 
also inf luenced the likelihood of a rainfall deficit 
occurring. Comparing precipitation deficits in the 
all-forcings ensemble between El Niño seasons with 
neutral and La Niña seasons, we found at least a 300% 
increase (best-estimate: 500% increase) in likelihood 
of having dry July–October periods in El Niño years. 
An analysis of the detrended long observed rainfall 
series shows that the probability of a dry season like 
July–October 2015 increases by at least a factor 20 
over neutral years (Fig. 22.2b). The models have a 
somewhat broader distribution toward dry seasons 
than the observations.

4) Attribution to El Niño: high temperature 
extremes
In comparison, ENSO has a weaker (but statistically 
signif icant relationship) with Indonesian land 
temperatures. In the models, the likelihood of hot 
July–October periods in Indonesia is raised by at least 
22% (best estimate: 51%) in El Niño seasons relative to 
neutral and La Niña events combined (Fig. 22.2d). The 
reanalysis shows a stronger effect, with the probability 
increased by at least 300% compared to a neutral year 
like 2005 (after detrending). This is again caused by 
the broader modeled distribution than the observed 
one (Fig. 22.2d).

Conc lus ions .  Indonesia endured severe heat 
and drought during the dry season of 2015. By 
investigating the July–October high temperatures 
and low rainfall totals in ensembles of coupled climate 
models with and without anthropogenic forcings, an 
attribution of these extreme conditions to human-
induced climate change and the concurrent El Niño 
was conducted. The model-based and observational 
analyses show that El Niño conditions strongly 
increased the probability of a drier-than-normal 
dry season, and that the background warming trend 
due to anthropogenic climate change increased the 
likelihood of high temperatures. El Niño also caused 
somewhat higher land temperatures. The models also 
show a trend toward less rain and more extreme dry 
events, which is smaller than can be significantly 
detected in the observations to now.

Dry-season precipitation variability in Indonesia 
is strongly related to ENSO, while a very clear warm-

ing trend is detectable there. Our results are in line 
with time of emergence studies in that regard (e.g. 
King et al. 2015; Mahlstein et al. 2011), which find 
an earlier warming signal in tropical regions such 
as Indonesia due to a high signal-to-noise ratio. A 
difficulty with performing this study was the lack 
of high-quality long-running observational climate 
data representative of our study area. The use of 
ERA-Interim reanalyses to evaluate the models and 
provide thresholds for the CMIP5-based analysis is 
not ideal. This difficulty is a problem across much 
of the developing world, where extreme weather and 
climate events also tend to have the strongest impacts. 
Further analysis on how to best conduct attribution 
studies where observations are sparse or have sus-
pected inhomogeneities is required.
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