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23. SOUTHERN AUSTRALIA’S WARMEST OCTOBER ON 
RECORD: THE ROLE OF ENSO AND CLIMATE CHANGE

Mitchell T. Black and David J. Karoly 
 

Introduction. Australia experienced its warmest 
October on record in 2015 (Australian Bureau of 
Meteorology 2015). This was primarily the result of 
an early season heat wave in the beginning of the 
month, concentrated over southern Australia (SAUS; 
Fig. 23.1a). The monthly anomaly for maximum 
temperature over SAUS (5.16°C; Fig. 23.1b) was the 
largest ever recorded for the region for any month of 
the year. This unseasonably warm weather over SAUS 
led to an early start to the bushfire season and caused 
significant crop losses across one of Australia’s most 
important agricultural regions, the Murray–Darling 
basin. 

The October heat coincided with one of the stron-
gest El Niño events on record. While warm and dry 
conditions over parts of Australia are typical of an El 
Niño event, the observed record-breaking tempera-
tures may have been exacerbated by climate change. 
This study uses very large ensembles of atmosphere-
only regional climate model simulations to assess the 
relative roles of the El Niño–Southern Oscillation 
(ENSO) and anthropogenic climate change in the 
October 2015 extreme heat across SAUS.

Data and methods. Our study made use of the 
weather@home Australia–New Zealand project 
(Black et al. 2016) to generate very large ensembles 
of reg iona l cl imate model simulat ions over 
Australia. This setup uses the atmosphere-only 
model, HadAM3P, to drive a nested regional model 
(HadRM3P; 0.44° resolution). For details of the 
modeling setup, see Black et al. (2016); only a brief 
description is provided here for context. First, the 

model was run under two distinct climate scenarios: 
observed (all forcings, ALL) and counterfactual 
(natural forcings only, NAT) realizations of the year 
2015. For the ALL simulations, the model was driven 
by observed sea surface temperatures (SSTs) and sea 
ice from the Met Office Operational Sea Surface 
Temperature and Sea Ice Analysis dataset (OSTIA; 
Donlon et al. 2012), as well as present-day atmospheric 
composition (well-mixed greenhouse gases, ozone, 
and aerosols). Very large ensembles were generated by 
running the model with perturbed initial conditions. 
For the NAT simulations, the model was driven by 
preindustrial (1850) atmospheric composition, while 
the SSTs were modified to remove different estimates 
of the warming attributable to anthropogenic 
greenhouse gases. Estimates of the SST changes 
due to human influence were separately calculated 
using eight CMIP5 models (Taylor et al. 2012; see 
online Supplemental Material). Therefore, eight 
alternative realizations of the NAT climate were 
created. By adjusting observed SSTs to remove the 
anthropogenic signal, the main modes of natural 
variability represented in the ALL SSTs (e.g., the 
phase of ENSO) are maintained in the NAT climate 
realizations. Therefore, any change of likelihood of 
heat events between the ALL and NAT scenarios can 
be directly attributed to anthropogenic forcing. 

To assess the influence of ENSO on the occurrence 
of SAUS temperature records, additional simulations 
were generated by driving the weather@home model 
with composite SST patterns representative of each of 
the three phases of ENSO: El Niño, Neutral, and La 
Niña (see online supplemental material for details). 
Each of these three phases was modeled under both 
ALL and NAT climate realizations (as per the 2015 
runs listed above). Previous work has shown that 
the weather@home model is able to correctly rep-
resent ENSO teleconnections over Australia (Black 
et al. 2016). We used all of the model simulations that 

Anthropogenic climate change was found to have a substantial influence on southern Australia’s extreme 
heat in October 2015. The relative influence of El Niño conditions was less clear.    
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were available at the time of this writing: 
at least 2700 members for each of the 
ALL scenarios (i.e., 2015 ALL, El Niño 
ALL, Neutral ALL, and La Niña ALL) 
and at least 650 members for each of the 
corresponding eight NAT realizations.

For brevity, this study focuses on 
SAUS because this region experienced 
exceptional October heat (Fig. 23.1a). 
A subset of SAUS, the Murray–Darling 
basin (MDB), is also examined as it 
is located in the east where the ENSO 
relat ionship with temperature is 
typically stronger (e.g., Min et al. 2013). 
Homogeneous temperature records 
for both regions were provided by the 
Australian Bureau of Meteorology (Figs. 
23.1b,c), calculated from the Australian 
Cl imate Obser vat ions Reference 
Network–Surface Air Temperature 
(ACORN-SAT) dataset (Trewin 2013). 
For both SAUS and the MDB, area-
weighted October average maximum 
temperatures were calculated for each 
of the ALL and NAT model simulations. 
As per Black et al.  (2015), we correct 
for model bias (0.13°C for SAUS and 
0.68°C for MDB) by adjusting the mean 
of the NAT distribution to equal that 
of the early ACORN-SAT observations 
(1910–39); this bias adjustment is then 
applied to the ALL distribution.

I n  l i n e  w i t h  o t h e r  c o m m o n 
approaches, we def ine an anomaly 
t hreshold based on t he prev ious 
observed record (+3.68°C for SAUS 
and +4.15°C for the MDB, both set in 
2014; see Figs. 23.1b,c). To quantify 
the change in risk of extreme heat 
due to different forcing scenarios, we 
calculate the fraction of attributable 
risk (FAR; Allen 2003), defined as FAR = 1 − (P1 / 
P2), where P1 and P2 represent the probabilities of 
exceeding the October temperature threshold in two 
different scenarios. In the first instance, we estimate 
the anthropogenic influence by setting P1 to be the 
probability of exceeding the October temperature 
threshold in the 2015 NAT scenarios, while P2 is 
the equivalent for the 2015 ALL scenario. Here, 
we aggregate the eight NAT realizations in order 
to calculate a best estimate of FAR. This process 
is repeated for the El Niño NAT and El Niño ALL 

scenarios. Next, to estimate the influence of El Niño 
conditions on the change in risk of extreme heat, 
we calculate FAR using P1 from the La Niña ALL 
simulations and P2 from the El Niño ALL simulations; 
this is also repeated for Neutral ALL (P1) and El 
Niño ALL (P2). Therefore, we are able to quantify the 
change in risk due to both anthropogenic forcing and 
the phase of ENSO. An assessment of FAR uncertainty 
was estimated by a bootstrap procedure (10 000 times 
with replacement) and the 10th percentile FAR value 
is used to make conservative estimates of changes in 

Fig. 23.1. Oct mean daily maximum temperatures from °Cthe 
Australian Bureau of Meteorology, expressed as anomalies relative 
to the 1961–90 base period. (a) Spatial anomaly field for Oct 2015. 
The southern Australian region (land area south of 25°S) and the 
Murray–Darling basin (hatched region) are shown. (b) Timeseries 
of the southern Australian anomalies from 1910 to 2015, calculated 
from the Australian Climate Observations Reference Network–
Surface Air Temperature dataset (Trewin 2013). (c) As in (b), but 
for the Murray–Darling basin. 
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risk associated with the different forcing scenarios. To 
assist with the interpretation of results, FAR values 
are also presented as estimated increase in likelihood. 

Results. Figure 23.2a shows the model-derived distri-
butions of SAUS October average maximum tempera-
ture for the various forcing scenarios. There is close 
agreement between the distributions for the 2015 ALL 
and El Niño ALL scenarios, as well as between the 
2015 NAT and El Niño NAT scenarios, suggesting that 
the El Niño composite SSTs are a suitable analogue for 
the 2015 observed conditions. Even though the SSTs 
for the 2015 El Niño were extreme, the model results 
in Fig. 23.2a indicate that the associated temperature 

anomalies in Australia were consistent with a typical 
El Niño event. The ALL scenarios are clearly warmer 
than the NAT scenarios. The La Niña ALL distribu-
tion is notably cooler than both Neutral ALL and El 
Niño ALL, although the warm tails of the distribu-
tions are seen to converge. Figure 23.2a suggests that 
even under La Niña conditions, extreme SAUS and 
MDB temperatures as warm as in El Niño ALL and 
Neutral ALL can be achieved. 

The corresponding FAR estimates for exceeding 
the previous SAUS temperature record are shown 
in Fig. 23.2b. When comparing the ALL scenarios 
against the NAT scenarios (first two columns of Fig. 
23.2b), the 10th percentile FAR estimates are around 

Fig. 23.2. (a) Distributions of southern Australian Oct average maximum temperatures for the various weather@
home modeling scenarios. The vertical line represents the previous temperature record (set in 2014). (b) Cor-
responding fraction of attributable risk (FAR = 1 − P1 / P2) calculated using different scenario combinations for 
P1 and P2, as indicated. Estimates of FAR are calculated using a bootstrapping approach (resampling distribu-
tions 10 000 times with replacement); boxes show the median and interquartile range while the whiskers extend 
to the 10th and 90th percentiles. See text for details. (c),(d) As in (a),(b) but for the Murray–Darling basin. 
Abbreviations: El Niño (EN), La Niña (LN), neutral (NU), all forcings (ALL), and natural forcings only (NAT). 
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0.76. Therefore, it is very likely (with 90% confidence) 
that anthropogenic climate change increased the like-
lihood of breaking the previous SAUS temperature 
record by at least 400%. Meanwhile, FAR estimates 
comparing El Niño ALL against La Niña ALL (third 
column) and Neutral ALL (fourth column) result in 
the 10th percentiles being below zero. Therefore, we 
cannot conclude (with 90% confidence) that El Niño 
conditions increased the likelihood of setting a new 
SAUS temperature record. The results for the MDB 
(Figs. 23.2c,d) are similar to SAUS. When comparing 
the ALL and NAT scenarios for the MDB, the 10th 
percentile FAR values were of the order of 0.67, that 
is a 300% increase in likelihood due to anthropogenic 
climate change. Meanwhile, the ENSO response is 
clearer over the MDB than for all of SAUS: FAR esti-
mates when comparing El Niño ALL and La Niña ALL 
indicate it is very likely that El Niño conditions in-
creased the likelihood of breaking the previous MDB 
record by 4% when compared to La Niña conditions. 

Conclusions. This study demonstrates a novel approach 
for separating the role of ENSO and anthropogenic 
climate change within the context of an event attribu-
tion study. Using regional climate model simulations 
from the weather@home modeling setup, we identify 
that anthropogenic climate change had a substantial 
inf luence on southern Australia’s extreme heat in 
October 2015. El Niño also contributed to the heat, 
but its relative influence was much weaker. These 
conclusions, of course, rely heavily on our assumption 
that our model is able to correctly represent extreme 
temperatures in southern Australia during El Niño 
events. However, this cannot be thoroughly tested 
due to a lack of observational samples. By generat-
ing an extremely large number of regional climate 
model simulations under different forcing scenarios, 
weather@home is shown to be a powerful tool for 
understanding the drivers of recent Australian tem-
perature extremes. 
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