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2. MULTIMODEL ASSESSMENT OF ANTHROPOGENIC 
INFLUENCE ON RECORD GLOBAL AND REGIONAL 

WARMTH DURING 2015

Jonghun Kam, Thomas R. KnuTson, FanRong Zeng, and andRew T. wiTTenbeRg

Introduction. HadCRUT4v4 observed surface tem-
perature data (Morice et al. 2012; 5° × 5° lat.–lon. 
grid boxes) indicates that 2015 was a clear record-
breaking year for global annual mean temperatures 
(Figs. 2.1a,b,e). In this analysis, we consider only grid 
boxes with at least 100 years of historical data, which 
narrows the focus mainly to the Atlantic and Indian 
Oceans, the North Pacific Ocean, Europe, the United 
States, southern Asia, and Australia (Fig. 2.1d). Six-
teen percent of this analyzed area experienced record 
annual warmth during 2015 (Fig. 2.1d). 

Observed global temperatures over the past decade 
had been warming at a rate less than the ensemble 
mean warming in the Coupled Model Intercom-
parison Project phase 5 all-forcing historical runs 
(CMIP5–ALL; Taylor et al. 2012). However, the record 
global temperature of 2015 (Fig. 2.1e), including the 
influence of a strong El Niño event (Fig. 2.1f), was 
warmer globally than the mean of the CMIP5-ALL 
model ensemble levels for 2015, relative to their re-
spective 1881–1920 means.

 Major regions with unprecedented annual mean 
warmth in 2015 included the northeast Pacific 
and northwest Atlantic, while during September–
November (SON) 2015, southern India/Sri Lanka 
stood out with record seasonal warmth (Fig. 2.1g; our 
region of focus in southern India and Sri Lanka does 
include some SST influence, as we used the combined 
SST/Tair dataset; see Supplemental Material). Only 
a small region south of Greenland (0.2% of the 

globe) experienced record annual mean cold surface 
temperatures (Fig. 2.1d). 

We constructed our regions of focus based on 
areas highlighted in Fig. 2.1d. These regions had 
some irregular shapes and were constructed to be 
mostly covered by new record annual or seasonal 
temperatures in 2015. In addition to global mean 
temperatures, we focused on two main regions and 
temporal domains—the Niño-4 region (annual 
means) and a region including southern India and Sri 
Lanka (SON means). To demonstrate the robustness 
for annual mean record warmth in 2015 over the 
Niño-4 region (Fig. 2.1g), we also showed extended 
reconstructed sea surface temperature (ERSST.v4; 
Huang et al. 2016) and Hadley Centre sea ice and sea 
surface temperature (HadISST1.1; Rayner et al. 2003) 
data reconstructions and found that these also show 
unprecedented annual mean warmth during 2015.

This study investigates the causes of these record 
warm events using an eight-model set of all-forcing 
(anthropogenic + natural) historical climate model 
runs, associated long-term control (unforced) runs, 
and natural forcing runs (CMIP5–ALL, –CONT, 
and –NAT, respectively). These eight models (listed 
in Supplemental Material) were selected, as they were 
the ones with CMIP5-NAT runs extending to 2012. 
Our methods follow the studies of Knutson et al. (2013 
and 2014); some of the descriptive text below is drawn 
from those reports.

Time-evolving trend analyses for long-term global and 
regional anthropogenic warming. Figures 2.2a–c show  
analyses for long-term global and regional trends 
using different start years, but with a common end 
year (2012 for CMIP5–NAT and 2015 for CMIP5–
ALL; the latter are extended with simulations forced 
by the RCP4.5 emissions scenario). Observed trends 
ending in 2012 and 2015 are shown for comparison. 

In 2015, record warm surface temperatures were observed for the global mean, India, and the 
equatorial central Pacific. CMIP5 simulations suggest that for the globe and India,  

anthropogenic warming was largely to blame. 
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For the sliding trends, we require at least 33% areal 
coverage in the region for at least the start year of 
the trend (Knutson et al. 2013), resulting in the gaps 
shown. The global mean analysis shows a pronounced 
observed warming, consistent with CMIP5–ALL yet 
statistically distinct from CMIP5–NAT, for all start 
years before about 1990. While the CMIP5–ALL 
runs occasionally are inconsistent with observed 
global trends through 2012 (at least for recent trends 
beginning in the 1990s), now that the record has 
been extended to 2015, we find that CMIP5–ALL 

trends beginning in the late 1990s now are generally 
consistent with observations. 

For the Niño-4 region (Fig. 2.2b), we compare 
results from three different observational datasets. 
The ERSST.v4 shows the strongest indication of a 
detectable warming, consistent with the CMIP5–ALL 
runs but inconsistent with the CMIP5–NAT runs for 
start years up to around 1960. In contrast, the Had-
ISST1.1 estimated trends are hardly distinguishable 
from the CMIP5–NAT runs, and also inconsistent 
with the CMIP5–ALL runs through most of the pe-
riod. The observed seasonal mean time series (SON) 

Fig. 2.1. (a),(b) Annual time series of the fractions of available global area with the top three warmest (red curve) 
and coldest (blue curve) annual mean temperatures in the available record (a) to that date and (b) to the entire 
record through 2015. (c) Annual mean surface air temperature anomalies (°C) for 2015 (relative to the 1961–90 
base period) from the HadCRUT4v4 dataset. (d) Colors identify grid boxes with annual mean anomalies that 
rank 1st (dark red), 2nd (orange-red), or 3rd (yellow-orange) warmest in the available observed record. Only 
colored and gray areas have sufficiently long records, defined here as containing at least 100 available annual 
means, which require at least four available months. (e)–(g) Annual mean surface temperature anomalies (°C) 
for the globe, Niño-4 region, and southern India/Sri Lanka (SON). Red (CMIP5–ALL) and blue (CMIP5–NAT) 
curves indicate ensemble mean simulated anomalies through 2015 and 2012, respectively, with each available 
model weighted equally; orange curves indicate individual CMIP5–ALL ensemble members. Black curves indi-
cate observed estimates from HadCRUT4v4 (solid) and NOAA NCEI (dotted). All time series are adjusted to 
have zero mean over the period 1881–1920. For the Niño-4 region, alternative observed anomalies from the 
ERSST.v4 and HadISST1.1 reconstructions and the ensemble anomalies for CMIP5–ALL are shown with +2.5°C 
and −2.5°C offsets from zero for display purposes.
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over southern India/Sri Lanka (Fig. 2.2c) shows a 
pronounced warming, consistent with CMIP5–ALL 
regardless of trend start year, and detectable relative 
to CMIP5–NAT for start years up to the 1970s. 

Overall, the trend analysis using the CMIP5 mod-
els shows a long-term warming over the globe and 
southern India/Sri Lanka (very likely attributable in 
part to anthropogenic forcing), and long-term trend 
results for the Niño-4 region that strongly depend on 
observational data uncertainties.

Model-based attributable risk assessment for the 2015 
extreme warm anomalies. Considering the anomalies 

and new record-breaking temperatures in 2015, there 
are many regions that could have been selected for the 
fraction of attributable risk (FAR; Stott et al. 2004) 
analysis. The major regions of records include global, 
eastern Pacific, western Atlantic, Indian Ocean, 
Europe, and south of Greenland (cold record). For 
our report, we chose to compute the FAR for global 
temperature, the Niño-4 region (with the prominent 
El Niño in 2015), and southern India/Sri Lanka 
(SON). The FAR compares the event tail probabilities 
(P) between the CMIP5–NAT and CMIP5–ALL 
runs (FAR = 1 − Pnat / Pall). Forced responses are 
derived from the multimodel ensemble means of the 

Fig. 2.2. (a)–(c) Sliding trends as a function of starting year, with ending year 2015 (black solid line) or 2012 
(black dashed line) [°C (100 yr)−1] for the globe, the Niño-4 region, and southern India/Sri Lanka. Black, red, and 
blue curves depict observations, CMIP5–ALL ensemble mean, and CMIP5–NAT ensemble mean, respectively. 
Black line/dots, green line/circles, and black line/stars depict observed trends from HadCRUT4, ERSST, and 
HadISST, respectively. Red (blue) lines depict the mean of trends from the CMIP5–ALL (CMIP5–NAT) runs, 
while pink (blue) bands depict the 5th–95th percentile range for an individual realization chosen randomly from 
the simulations, with equal representation for each model. Purple shading indicates the overlap of the pink and 
blue region. (d) Estimates of the FAR of exceeding the first- (2015) and second-ranked observed temperature 
anomaly thresholds from the CMIP5 multimodel ensemble (large red and orange circle, respectively); black 
solid circles correspond to the FAR estimated from the eight paired CMIP5–ALL and –NAT runs from individual 
CMIP5 models, for the second-ranked observed anomalies. (e) Histogram of the Niño-4 region variances for 
non-overlapping 155-year epochs of the eight individual model control runs, along with estimates from three 
observational datasets from which the model-estimated forced response has been removed (1861–2015).
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CMIP5–ALL and CMIP5–NAT simulations, while 
the impact of internal variability on the modeled 
trend distributions was estimated using the CMIP5–
CONT runs (Knutson et al. 2013). Our FAR estimates 
use the first- (2015) and second-ranked observed 
positive anomaly as the extreme event thresholds 
(Fig. 2.2d). For extremely large anomalies, the FAR 
can be particularly difficult to estimate, as it is based 
on a ratio of very small areas under the distribution 
tails (Kam et al. 2015). Therefore we used the second-
ranked observed anomalies as the threshold values for 
our primary FAR estimates, as these anomalies are 
not quite as extreme as the top-ranked ones. 

According to the HadCRUT4v4, the second-
ranked anomalies over the globe, southern India/
Sri Lanka, and the Niño-4 region occurred in 2014, 
2010, and 1888, respectively, while the ERSST.v4 
and HadISST1.1 datasets show the second-ranked 
anomalies over the Niño-4 region occurred in dif-
ferent years (2002 and 1987, respectively). Based 
on the HadCRUT4v4, the simulated probabilities 
of exceeding the second-ranked anomalies for the 
globe, southern India/Sri Lanka, and the Niño-4 
region are 58% (0.005%), 23% (0.3%), and 32% (1.5%) 
for the CMIP5–ALL (CMIP5–NAT) runs, respec-
tively. Sensitivity tests for the Niño-4 region using 
the second-ranked anomalies from the ERSST.v4 and 
HadISST1.1 datasets are consistent with the results 
from the HadCRUT4v4 (not shown). The FAR esti-
mates are 0.99, 0.98, and 0.95 for the globe, southern 
India/Sri Lanka (SON), and the Niño-4 regions, re-
spectively. Uncertainties in the FAR estimates were 
explored by computing the spread of FAR estimates 
across individual CMIP5 models (Fig. 2.2d). These 
sensitivity tests show that, using the second-ranked 
year threshold values, the estimated FAR is above 0.9 
for seven, five, and five out of eight individual models 
for the globe, Niño-4 region, and southern India/Sri 
Lanka, respectively (See Supplemental Material).

A crucial assumption of our study is that the in-
ternal variability simulated by the models represents 
the real-world variability adequately. The modeled 
variability is used as the null hypothesis for explain-
ing trends, and if it is underestimated (overestimated) 
this makes it too easy (difficult) to detect significant 
trends and too difficult (easy) for model simulations 
to be consistent with observations (Knutson et al. 
2013). Therefore, we evaluated the decadal variability 
of temperature anomalies over the Niño-4 region by 
comparing a derived observed variability with CMIP5 
control run variability. Variability comparisons for 
other regions have been previously summarized in 

Knutson et al. (2013), and plots similar to Fig. 2.2e 
for global temperature and the southern India/Sri 
Lanka region are shown in the supplemental material. 

To isolate the decadal variability, we apply a low-
pass filter with a half-power point at nine years. For 
the observed internal variability temperature esti-
mate, we subtracted the grand ensemble mean of the 
CMIP5–ALL runs from observations to attempt to 
remove the forced component of the observed varia-
tions. We have not adjusted the forced component es-
timate to better fit the observations as done in Mann 
et al. (2014) and Steinmann et al. (2015), which would 
be a further refinement beyond the scope of this 
study. As a sensitivity test for Niño-4, we compared 
the modeled variability (8 GCMs shown in Fig. 2.2e 
and 23 GCMs in the Supplemental Materials) with 
that estimated from three different observational 
datasets. To estimate the model internal variability, 
we compute the temperature anomaly variance using 
each model’s entire control run. Details for these cal-
culations, and control run lengths used, are described 
in Knutson et al. (2013). The eight GCM control runs 
show a wide range of the simulated decadal variances, 
between 0.025° and 0.08°C2. The analogous estimates 
of the unforced component of the variance from the 
observational reanalyses are 0.048°C2 (ERSST.v4) and 
0.051°C2 (HadCRUT4v4), both of which are located 
near the center of the intermodel histogram of the 
control run decadal variances, while the HadISST1.1 
shows a somewhat larger decadal variance (0.068°C2) 
which is greater than that from five of the eight 
models. The sensitivity tests for observed decadal 
variances, and our earlier sliding trend analyses, 
indicate that for the Niño-4 region, observational 
uncertainties significantly obscure the detection and 
attribution of past trends or recent extreme events. 

Conclusions. For 2015, the tendency for a greater ra-
tio of global area covered by extreme annual-mean 
warm versus cold events, as seen in recent decades, 
has continued. According to the CMIP5 models, the 
risk of events exceeding the extreme (first- or second-
ranked) thresholds for the globe, the Niño-4 region, 
and southern India/Sri Lanka is almost entirely attrib-
utable to anthropogenic forcing, with the ensemble 
mean FAR above 0.9, and with strong agreement re-
garding relatively high FAR estimates among the eight 
GCMs that provided natural-forcing simulations. 
The strongest model-based evidence for detectable 
long-term anthropogenic warming, and the highest 
confidence in a large fraction of attributable risk, 
was found for the global mean and southern India/
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Sri Lanka (SON). In the Niño-4 region, confidence in 
long-term trend assessment and in the FAR estimates 
is limited, due to uncertainties in the observational 
data and a wide range of simulated decadal variances 
from the control runs.  
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