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18. ANTHROPOGENIC ENHANCEMENT OF 
MODERATE-TO-STRONG EL NIÑO EVENTS LIKELY 

CONTRIBUTED TO DROUGHT AND POOR HARVESTS IN 
SOUTHERN AFRICA DURING 2016

Chris Funk, Frank Davenport, Laura harrison, tamuka magaDzire, giDeon gaLu, 
guLeiD a. artan, shraDDhananD shukLa, Diriba koreCha, matayo inDeje, Catherine pomposi, 

Denis maCharia, gregory husak, anD Faka DieuDonne nsaDisa

A 40-member CESM LE ensemble indicates that climate change likely increased the intensity 
of the 2015/16 El Niño, contributing to further decreases in SA precipitation, crop production 

and food availability.

Introduction. In December–February (DJF) of 2015/16, 
a strong El Niño (Niño‑3.4 SST >29°C) contributed to 
a severe drought over southern Africa (SA; Funk et al. 
2016). A 9‑million ton cereal deficit resulted in 26 mil‑
lion people in need of humanitarian assistance (SADC 
2016). While SA rainfall has a well‑documented nega‑
tive teleconnection with Niño‑3.4 SSTs (Hoell et al. 
2015, 2017; Jury et al. 1994; Lindesay 1988; Misra 2003; 
Nicholson and Entekhabi 1987; Nicholson and Kim 
1997; Reason et al. 2000; Rocha and Simmonds 1997), 
the link between climate change and El Niño remains 
unclear (Christensen et al. 2013) due to the large 
natural variability of ENSO SSTs (Wittenberg 2009), 
uncertainties surrounding measurements and trends 
(Solomon and Newman 2012), intermodel differences 
in ENSO representation and feedbacks (Guilyardi et 
al. 2012; Kim et al. 2014), and difficulties associated 
with quantifying ENSO strength (Cai et al. 2015).

Figure 18.1a highlights observational uncertain‑
ties (Compo and Sardeshmukh 2010; Solomon and 
Newman 2012) using four datasets: ERSSTv4 (Huang 
et al. 2015), HadISST (Rayner et al. 2003), Kaplan SST 
(Kaplan et al. 1998), and Hurrell (Hurrell et al. 2008). 
These products differ substantially in their represen‑
tation of cool events and Niño‑3.4 variance. Two SST 
products indicate significant upward trends; two SST 
products do not. These data have been standardized 
to remove systematic differences in variance.

Focusing just on the behavior of moderate–strong 
El Niño events (MSENEs), we can produce more ro‑
bust (first order) statistics by comparing the means of 
the top ten warmest Niño‑3.4 events between 1921–80 
and the top six warmest events between 1981–2016. 
Rather than using a set SST threshold, MSENEs are 
defined as 1‑in‑6‑year warm events. This provides a 
simple nonparametric approach that takes advantage 
of the well understood quasi‑periodic nature of ENSO 
to identify MSENEs across multiple models and 
simulations. Modest changes in the number of events 
(say, 1‑in‑7 or 1‑in‑5) produced modest increases and 
decreases in El Niño temperatures, but did not sub‑
stantially change the results.

We begin our analysis in 1921 (because ship data 
before 1921 is limited), and divide the remaining 96 
years into two time periods with relatively weak and 
strong radiative forcing, respectively. Examining 
changes in MSENE means (horizontal lines in Fig. 
18.1a), we find that all the observational datasets 
identify significant increases (Fig. ES18.1 examines 
ERSSTv4 errors). Note that we are not explicitly ex‑
amining changes in ENSO variance, ENSO means, or 
Niño‑3.4 SST trends, but only Niño‑3.4 magnitudes 
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during MSENEs. We will use a 40‑member ensemble 
of simulations from the CESM1 Large Ensemble (LE) 
project (Kay et al. 2015) to contrast SA rainfall dur‑
ing MSENEs based on historic simulations forced 
with greenhouse gasses and aerosols with simulated 
precipitation under preindustrial (PI) conditions.

ENSO exhibits large natural variations in ampli‑
tude (Wittenberg 2009). Figure 18.1b shows Niño‑3.4 
SST from 1700 years of CESM LE PI simulations. 
Even without climate change, we find Niño‑3.4 
SST anomalies greater than +3°Z (where Z denotes 
a standardized anomaly), sometimes occurring in 
sequence. To derive a PI sampling distribution that 
mimics Fig. 18.1a, we calculate 10 000 sample changes 
in 1‑in‑6‑year maximum SST, based on sequential 
periods of 60 and 36 years, drawn from the 1700 
year CESM1 PI simulation. Large changes can occur 
through nonanthropogenic processes (Fig. 18.1c). We 
use this PI distribution to assess the likelihood of the 
observed ~+0.61° ± 0.18°C temperature difference for 
MSENEs in the two composites. Such a change would 
be possible but very unlikely under PI conditions (only 
7% of the PI simulations warmed this much). While 

unlikely, such an event is certainly plausible in a world 
without climate change.

Using 40 simulations from the CESM LE experi‑
ment, we can also derive a PDF of 1981–2016 versus 
1921–80 El Niño SSTs (Fig. 18.1c). An animation of 
these individual simulations can be found at https://
tinyurl.com/Niño3‑4‑sims‑gif. Contrasting the vari‑
ance of the 1981–2016 historic versus PI Niño‑3.4 
CESM LE SST time series, we find a substantial 
(55%) increased in variance (from 1.23°C2 to 1.91°C2, 
p = 0.0001). Not all simulations produced an increase, 
and the PI and historical PDFs overlap substantially. 
Overall, however, we find a substantial (+0.75°C 
average change) and significant (p = 0.0001, d.f. 638) 
increase in MSENE Niño‑3.4 SST, which appears to 
be only partially explained by a shift in the overall 
mean between 1921–80 and 1981–2016 (+0.36°C). The 
95% confidence intervals of this estimated change are 
large 0.0 to +1.3°C. Under PI conditions, the observed 
+0.61°C warming would be very unlikely (p = 6%). 
Based on the historical climate change PDF, warm‑
ing of +0.61°C or more would be likely. A 53‑member 
multimodel ensemble also shows substantial and 

Fig. 18.1. (a) Observed NINO3.4 SST (Z) from four sources, trend lines, and changes in 1-in-6-year maximum 
Niño-3.4 seasons. (b) 1700 years of DJF Niño-3.4 SSTs (Z) from the CESM1 PI simulation. (c) PI and Historic 
distributions of changes in 1-in-6-year maximum NINO3.4 SST. Gray/green shading denotes likelihood given PI 
conditions. (d),(e) Composites of CESM Historic simulation SST (°C) and precipitation (mm day−1), respectively, 
for the top 1-in-6 1981–2016 NINO3.4 SST seasons and the top 1921–80 seasons. These are based on the mean 
of 6 × 40 events and 10 × 40 events.
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significant Niño‑3.4 SST increases). This 53‑mem‑
ber multimodel ensemble indicates that 1981–2016 
MSENEs would be +0.58°C warmer. 

These results appear consistent with recent model 
analyses showing an increase in the frequency of 
strong El Niño events with greenhouse warming (Cai 
et al. 2015) and 1920–2040 ENSO amplitude (Kim et 
al. 2014), and reconstructions of paleo‑ENSO vari‑
ance at centennial (Li et al. 2013; McGregor et al. 
2013) and millennial (Cobb et al. 2003) time scales. 
Figures 18.1d, e show changes in the CESM1 historic 
El Niño SST and precipitation; the CESM simulations 
indicate substantial increases in zonal and meridional 
SST gradients and equatorial rainfall anomalies, both 
of which are features of stronger ENSO forcing (Cai 
et al. 2015). CAM5 simulations based on observed 
SSTs show similar precipitation changes (Fig. ES18.2).

SA and Niño-3.4 rainfall analysis. This section exam‑
ines SA and NINO3.4 precipitation from CESM LE 
PI and historical precipitation simulations1. Figure 
18.2a shows the SA and NINO3.4 precipitation PDFs 
associated with MSENEs. Precipitation increases in 
Niño‑3.4 excites equivalent barotropic Rossby wave 
trains (Hoskins and Karoly 1981) that increase the 
frequency of SA drought (Hoell et al. 2015). The risk 
ratio for strong Niño‑3.4 precipitation events (>1Z‑
score, or standardized anomaly) was 181%. The risk 
ratio is the ratio of the event probability in the real 

1We use a box for SA that is slightly to the west (19°–25°S, 
15°–25°E) of the region used Funk et al. 2016, because rainfall 
simulations from the atmospheric component of the CESM1 
(CAM5) displace the SA ENSO teleconnection slightly to the west 
(Fig. ES18.2).

world and ‘natural’ world without climate change 
influences (Easterling et al. 2016).

The PDFs of SA rainfall indicate substantial un‑
certainty, underscoring the complexity of SA rainfall, 
internal atmospheric variability, and the partial in‑
fluence of ENSO, which describes about ~50% of the 
SA rainfall variance (Funk et al. 2016). Both the PI 
and historic ensembles have substantial spread, but 
the historic PDF is shifted to the left, indicating an 
increased chance of droughts during El Niño events. 
The risk ratio for droughts less than −1Z is 160%. A 
two‑sample t‑test indicates a very significant change 
(−0.6Z, p = 0.0001), with 95% confidence intervals 
of −0.4Z to −0.8Z. Given the inherent complexities 
in ENSO and a limited observational record to place 
the 2015/16 event in a broader historical context, we 
cannot be sure that SSTs in the Niño‑3.4 region dur‑
ing recent MSENEs were not higher due to internal 
variability (noise). Still, utilizing tools like the CESM 
LE project, we can conclude that there is a likely shift 
towards higher Niño‑3.4 SSTs and precipitation, and 
lower SA rainfall outcomes in the later MSENEs 
compared to earlier ones and that this is related to 
anthropogenic forcing. Examining the probabilities 
of the observed −1.7Z rainfall deficit based on the PI 
and historic distributions, we find that a drought of 
this severity would be possible but very unlikely under 
PI conditions (probability ~9%) and unlikely under 
historic conditions (probability ~20%).

Food security analysis—southern Africa. We relate 
changes in SA rainfall to changes in crop production. 
The major sources of uncertainty in this assessment 

Fig. 18.2. (a) Precipitation attribution results. Standardized CESM SA and Niño-3.4 MSENE precipita-
tion (Z) PDFs for PI and 1981–2016 Historic ensembles. Historic MSENE ensemble was based on 15% 
of 40 simulations for 36 years (216 El Niño events). Also shown are results based on 10% and 20%. PI 
ensemble used 15% of 1680 years (252 El Niño events). Green and gray shading indicates the probability 
of the observed −1.7Z drought occurring within the PI distribution. (b) Bootstrapped distribution of 
SA crop production anomalies (%), based on the PI and Historic SA precipitation distributions from 
(a), and the slope coefficient sampling distribution. Anomalies based on 2008–13 averages. (c) PDFs of 
changes in undernourishment (%) in Zimbabwe and Malawi, based on (b) and an FAO percent under-
nourished estimation procedure.
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are 1) the uncertainty associated with SA rainfall 
changes, and 2) uncertainty in the relationship be‑
tween SA rainfall and crop production. A regression 
between detrended 1981–2016 southern African2 
crop production and SA rainfall exhibited a signifi‑
cant but modest relationship (slope = +13.5% per 1Z, 
R2 = 0.42), with a considerable standard error (3.7% 
per Z). To capture these uncertainties, we use a Monte 
Carlo sampling strategy based on 10 000 samples. For 
each sample we drew one CESM SA rainfall value 
out of the 240 1981–2016 El Niño samples (R1981–2016), 
one rainfall outcome from the 280 PI SA El Niño 
rainfall values (RPI), and one regression slope value 
(S) from a normal distribution with a mean of 13.5 
and a standard deviation of 3.7. A production change 
value was then estimated as (R1981–2016 − RPI)S. This was 
repeated 10 000 times. As shown in Fig. 18.2b these 
estimates exhibit a high degree of uncertainty. The 
95% confidence intervals range from −48% to 21%, 
with a median impact of −11%. The observed 2016 
production anomaly was −17%. Seventy‑four percent 
of these estimates were below normal, suggesting that 
it was likely that anthropogenic SA rainfall reductions 
also reduced SA crop production. Repeating this 
analysis for 1‑in‑10 and 1‑in‑5‑year El Niño events 
produced similar results. It should be noted that the 
CAM5/CESM models tend to displace the SA rainfall 
anomalies to the west, indicating that the models do 
not perfectly capture the regional climatology. Ob‑
servational studies, however, have produced results 
consistent with those presented here (Funk et al. 2016; 
Hoell et al. 2015; Ratnam et al. 2014).

Focusing on Zimbabwe and Malawi, large coun‑
tries that rely on local production, we estimate chang‑
es in the undernourished population by translating 
production losses (Fig. 18.2b) into changes in the 
percent of the population estimated to be undernour‑
ished (FAO 2008).  The broad uncertainty in produc‑
tion impacts translates into a wide spread of possible 
changes in undernourishment (Fig. 18.2c). These 
results indicate a median increase of the percent 
undernourished population to be 15% in Zimbabwe 
and 18% in Malawi, but the uncertainty surrounding 
these estimates is very high.

Conclusion. While the high natural variability of 
Niño‑3.4 SSTs and the complexities surrounding both 
ENSO and climate change and ENSO/SA telecon‑
nections make analyzing ENSO/SA/climate change 
difficult, the large CESM LE ensemble provides an 

2 South Africa, Lesotho, Swaziland, Botswana, Zambia, Mozam‑
bique, Malawi, and Zimbabwe. 

exciting new resource. These simulations suggest that 
the recent increases in MSENE Niño‑3.4 SST would 
be possible but unlikely under PI conditions and likely 
in historic climate change conditions. The CESM1 
simulations suggest that some of this warming 
(+0.36°C) is associated with a trend towards warmer 
Niño‑3.4 conditions, but we find additional warming 
that may be associated with an amplification of strong 
ENSO responses (Cai et al. 2015) and east Pacific 
precipitation (Cai et al. 2015). Contrasts between PI 
and historic SA and Niño‑3.4 El Niño precipitation 
events show likely decreases and increases, respec‑
tively. Contributions to increased crop deficits are also 
found to be likely, but with a large spread of possible 
outcomes. While the large number of available CESM 
and CAM5 simulations allowed us to examine in 
depth responses in a single atmospheric model, more 
research with more models will be needed to validate 
the results. It should also be noted that this study has 
not focused on the future average climate; we are not 
suggesting that the future average climate will look 
more El Niño‑like. It should also be noted that while 
observational analyses support stronger SA drought 
signals during strong canonical El Niño events (Hoell 
et al. 2015; Ratnam et al. 2014), Indian Ocean SST pat‑
terns also influence regional precipitation (Goddard 
and Graham 1999; Hoell et al. 2017); these influences 
have not been factored into this analysis.
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