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24. ANTHROPOGENIC INFLUENCE ON THE EASTERN 
CHINA 2016 SUPER COLD SURGE

Ying Sun, Ting Hu, Xuebin Zhang, Hui Wan, Peter Stott, and Chunhui Lu

Human influence decreased the probability of a cold surge occurrence in China.

Introduction. A super cold surge during the winter of 
December 2015 to February 2016 was widely reported 
by Chinese media. This cold surge originated from the 
Siberian High and swept across the country on 21–25 
January 2016, bringing very strong winds and a large 
and sudden fall in temperature. During the cold surge, 
air temperatures dropped more than 12°C over 18% 
of the country and by 6°C over more than 80% of the 
country. More than 95% of the country experienced 
frigid winter weather with minimum temperatures 
below 0°C (Jiang et al. 2016). Record-breaking mini-
mum temperatures were reported at many observing 
stations, with temperature at −46.8°C observed in the 
Inner Mongolia autonomous region. The lives of more 
than one billion people were affected by this cold 
surge. Snowfall occurred in Guangzhou, the capital 
city in one of the southernmost provinces in China—
the first ever snow event since the meteorological 
observing station was established. Extreme weather 
brought by the cold surge, such as heavy snowfall, 
freezing rain, and frost, caused significant impacts on 
transportation and electricity transmission systems, 
and on agriculture and human health (CMA 2017). 

One would naturally expect a reduction in cold 
extremes as a result of global warming. Nevertheless, 
some studies have suggested that Arctic amplification 
of warming and Arctic sea ice loss may have contrib-
uted to the so-called “warm Arctic–cold Eurasia” 
pattern over the past few decades (e.g., Cohen et al. 
2014; Mori et al. 2014). It has therefore been specu-
lated that continued Arctic sea ice loss would cause 

more cold extremes in the continental midlatitudes. 
This does not seem to be the case in the United States 
where very cold winters have become less likely due 
to global warming (Wolter et al. 2015; Trenary et al. 
2016). In China, a few recent studies have shown that 
the decrease in the intensity and frequency of cold 
extremes can be attributed to human influence (Yin 
et al. 2016; Lu et al. 2016) although the attribution of 
cold surge events has not yet been resolved. Here we 
examine a related question with regard to long-term 
change in extreme cold surges, such as the 2015 win-
ter cold surge in eastern China, and possible causes 
of the change. 

Data and methods. We use the gridded daily mini-
mum temperature available from the China National 
Meteorological Information Center. The data is on a 
0.5° × 0.5° grid and is based on the homogenized daily 
temperatures at 2419 stations (Cao et al. 2016). These 
data were converted to 2° × 2° resolution prior to sub-
sequent analyses. As the cold surge mainly affected 
the eastern part of China that is within the East Asian 
monsoon region, we focus on three large north–south 
regions, including Northern China (NC; 36°–46°N, 
104°–124°E), the lower Yangtze River Valley (YRV; 
28°–36°N, 104°–124°E) and Southern China (SC; 
18°–28°N, 104°–124°E). These regions are marked by 
the red boxes in Fig. 24.1a. We use the lowest regional 
average of daily minimum 2-m temperatures (TNn) 
in winter months (December–February) to represent 
the severity of a large-scale cold air outbreak. The 
regional averages were obtained by area weighting the 
gridded data available within each region. Regional 
anomalies of TNn relative to 1961–90 average are 
retained for the subsequent analyses. 

Daily minimum temperatures simulated by the 
climate models participating in the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) are also 
used. This includes 62 simulations from 16 models 
forced with the combined effect of anthropogenic 
and natural external forcings (ALL) and 26 simula-
tions from 6 models forced with the natural external 
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forcings only (NAT). These simulations are used to 
estimate the model response to ALL and NAT forcings 
respectively. Pre-industrial control simulations from 
28 models are also used in the estimation of natural 
variability. Details about the simulations and proce-
dures for processing the model data are given in Table 
ES24.1 and the other online supplement material. 

Our method is similar to 
Sun et al. (2014); it involves 
the detection and attribu-
tion analysis and estimate 
of relative risk of an event 
in the world with or without 
human inf luence. For the 
detection and attribution 
analysis, we consider spatial 
averages of daily minimum 
temperature over a large re-
gion which has a strong tem-
poral persistence. Because of 
this, the minimum values 
sampled from area average 
daily minimum tempera-
ture over a winter have a 
symmetric probability dis-
tribution rather than an 
extreme value distribution. 
We therefore apply the total 
least square (TLS) method 
(Allen and Stott 2003) to 
regress the observations 
onto ALL and NAT signals 
computed as multimodel 
ensemble means of the rel-
evant simulations. The re-
gression is conducted on 
space–time series of 3-win-
ter non-overlapping mean 
series for winters 1961/62 
through 2011/12 over the 
three spatial domains. The 
use of a 3-winter mean series 
is a compromise for reduc-
ing temporal dimension as 
well as variability but still 
retaining climate response 
to volcanic forcing. The co-
variance matrix required 
for solving the regression 
problem is based on regu-
larized co-variance matrix 
described in Ribes et al. 

(2013) as this estimator is more robust. The regression 
coefficient is called the scaling factor, indicating the 
magnitude that simulated signal must be scaled to 
best match the observations. A signal is detected if 
the 90% confidence interval (CI) of the corresponding 
scaling factor is above zero. To estimate relative risk, 
we first multiply the ALL and the NAT signals by the 

Fig. 24.1. (a) 2015/16 winter TNn anomalies (°C). Boxes indicate NC, YRV, and 
SC regions; see text for coordinates. (b) Time series of winter regional mean 
TNn anomalies (°C) in NC (green), YRV (black), and SC (red). The numbers 
indicate anomalies for 2015/16 winter.
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corresponding scaling factors to obtain the observa-
tion-constrained best estimates of ALL and NAT re-
sponse in winters 2013/14–2015/16. We use ensemble 
mean of RCP4.5 simulation to represent ALL signal 
in winters 2013/14–2015/16 (red dots in Figs. 24.2a–c). 
The NAT experiments end in 2012, so we simply use 
the NAT signal for winters 2009/10–2011/12 for win-
ters 2013/14–2015/16 (blue dots in Figs. 24.2a–c). This 
is justified since there was no major difference in the 
levels of volcanic activity between the two three-year 
periods. The scaling factors are obtained from the 
two-signal detection analysis in which observations 
are regressed simultaneously to ALL and NAT signals. 
We then add the preindustrial control simulations 
to these best estimates to reconstruct 
extreme temperature series represen-
tative of the 2015/16 winter climate 
in the world with or without human 
influence. The probabilities of a cold 
surge of the magnitude of the 2015/16 
winter event in the world with (p1) or 
without (p0) anthropogenic influence 
are the percentages of times when tem-
perature anomalies are at or below the 
observed 2015/16 winter value in the 
relevant series. The relative risk or risk 
ratio (RR) is defined as RR = p1/p0. 
The CI of the risk ratio was estimated 
from 1000 random samples of scaling 
factors assuming the scaling factors 
follow normal distributions. 

Results. Figure 24.1a shows the TNn 
anomalies in the 2015/16 winter. 
Negative anomalies were observed 
in most areas of eastern China (east 
of 105°E), with the largest anomalies 
below −3.5°C appearing in central and 
northern China. This strong negative 
anomaly is in sharp contrast with 
continuous warming in winter mean 
temperature in recent decades (MOST 
2016). In fact, the 2015/16 winter mean 
temperature was slightly higher than 
the 1971–2000 average (CMA 2017). 
The coldest TNn for the 2015/16 win-
ter occurred during this cold surge 
(21–25 January 2016) in most stations 
(not shown). The anomalies of winter 
minimum regional mean daily mini-
mum temperature in the three regions 
NC, YRV, and SC (Fig. 24.1b) were 

−2.8°C, −2.5°C, and −1.6°C, respectively. They were 
ranked as the 3rd, 5th, and 7th coldest since 1961 for 
the respective regions.

Figures 24.2a–c show the observed and the simu-
lated 3-winter mean non-overlapping series. The 
observed TNn has increased at the rates of 0.43°C 
decade−1, 0.35°C decade−1, and 0.41°C decade−1 for 
NC, YRV, and SC, respectively, during 1961/62 winter 
through 2011/12 winter. The linear trends (dashed 
lines) in the simulated responses to ALL forcing are 
0.25°C decade−1, 0.17°C decade−1, 0.15°C decade−1, 
respectively, indicating that the models may have un-
derestimated the observed changes. The NAT trends 
are 0.10°C decade−1, 0.11°C decade−1, 0.07°C decade−1, 

Fig. 24.2. The 3-year winter mean non-overlapping TNn anomalies 
(°C) from the observations (black) and model simulations under ALL 
(red) and NAT (blue) forcings for (a) NC, (b) YRV, and (c) SC regions. 
Red and blue lines indicate multimodel ensemble mean. Dashed lines 
show long term trends. Reconstructions of the 3-year winter mean 
for ALL forcings in winters 2013/14–2015/16 and NAT forcings in 
winters 2009/10–2011/12 are marked with red (ALL) and blue (NAT) 
dots and numbers. Pink and blue shadings show the 5%–95% ranges 
of the individual model simulations from ALL and NAT experiments, 
respectively. Histograms of the winter minimum regional mean TNn 
anomalies (°C) for (d) NC, (e) YRV, and (f) SC, under NAT (blue) ALL 
(red) forcing. The black lines indicate the 2015/16 winter anomalies.
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respectively, suggesting a possibility for NAT forcing 
to contribute to the observed warming. Note however 
that models may have overestimated NAT response 
since CMIP5 underestimates volcanic aerosols for the 
21st century (Santer et al. 2014). The scaling factors 
for anthropogenic forcing (ANT) and NAT are 2.45 
(90% CI: 1.07–4.17) and 1.52 (90% CI: −0.68–3.47), 
respectively, in the two-signal detection analysis 
in which observed series is regressed to ALL and 
NAT simultaneously. This means that the observed 
changes in extreme winter temperature are mainly 
due to anthropogenic forcing. Natural external forc-
ing may have contributed to observed trend but its 
contribution is not significantly different from zero. 
The observed TNn has a standard deviation of 1.91°C, 
1.70°C, 1.54°C in NC, YRV, and SC, respectively. 
The best estimate of reconstructed series with both 
anthropogenic and natural forcings has a standard de-
viation of 2.28°C (90% CI: 1.64°–2.93°C), 2.16°C (90% 
CI: 1.47°–2.86°C), 1.74 °C (90% CI: 1.16°–2.31°C), 
respectively. The fact that the observed variability is 
slightly smaller but also generally comparable to that 
in the reconstructed series indicates that it is possible 
to produce a credible estimate of the probability of 
extreme temperature based on reconstructed series.

 As shown in Figs. 24.2d–f, the empirical prob-
ability density of TNn shifts towards warmer tem-
peratures in the world under anthropogenic influence 
in all three regions, meaning that anthropogenic 
inf luence decreased the probability of cold surge. 
Table 24.1 summarizes the results. External forcing 
may have warmed TNn by 2.6°C, 2.0°C, and 1.6°C 
in NC, YRV, and SC, respectively, by 2015. That is to 
say, the 2015/16 winter cold surge would have been 
much stronger without anthropogenic induced warm-
ing. The risk ratio for the event of 2015/16 winter 

magnitude is 0.11, 0.27, 0.31 for NC, YRV, and SC, 
respectively, meaning that the anthropogenic influ-
ence may have respectively reduced the occurrence of 
such a cold event by 89% (90% CI: 54%–98%) , 73% 
(90% CI: 37%–90%), and 69% (90% CI: 30%–86%). 

Conclusions and discussion. The magnitude of winter 
cold surge has not increased in Eastern China. It has 
decreased due to anthropogenic influence. This is 
consistent with earlier findings of Yin et al. (2016) 
and Lu et al. (2016), who found that cold extremes in 
China have decreased due to anthropogenic influ-
ence. The recent super cold surge of Eastern China 
that occurred 21–25 January 2016 would have been 
much stronger if there was no human-induced warm-
ing. Alternatively, the occurrence for a cold surge with 
the magnitude of the 2015/16 winter event has been 
much reduced due to anthropogenic influence. Note 
that our quantification of anthropogenic influence 
on cold surge involves the comparison between ALL 
and NAT responses. As different sets of models are 
used in such a comparison, the results would also be 
impacted by this aspect of modeling uncertainty. Ad-
ditionally, results can also be sensitive to the subsets 
of selected models because uncertainty in signal esti-
mation becomes larger with a much-reduced number 
of simulations. 
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Table 24.1. Possible human influence on the cold surge like the 2016 January event.

TNn NC YRV SC

Observed TNn anomaly −2.8°C −2.5°C −1.6°C

Warming attributable to 
ALL forcing

2.6°C 2.0°C 1.6°C

Return period in a world 
without human influence

14 years 
(90% range 10–19 years)

12 years 
(90% range 9–15 years)

9 years 
(90% range 6–14 years)

Return period in a world 
with human influence

131 years 
(90% range 21–914 years)

42 years 
(90% range14–144 years)

28 years 
(90% range 8–97 years)

Risk ratio (RR)
0.11 

(90% range 0.02–0.46)
0.27 

(90% range 0.10–0.63)
0.31 

(90% range 0.14–0.70)
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