Cover Credits:

Front/Back: Courtesy of Reuters/Mike Hutchings

Malawian subsistence farmer Rozaria Hamiton plants sweet potatoes near the capital Lilongwe, Malawi, 1 February 2016. Late rains in Malawi threaten the staple maize crop and have pushed prices to record highs. About 14 million people face hunger in Southern Africa because of a drought that has been exacerbated by an El Niño weather pattern, according to the United Nations World Food Programme.

A supplement to this report is available online (10.1175/2017BAMSStateoftheClimate.2)

How to cite this document:

Citing the complete report:

Citing a chapter (example):

Citing a section (example):
Aaron-Morrison, Arlene P., Trinidad & Tobago Meteorological Service, Porco, Trinidad
Abdallah, A., Agence Nationale de l’Aviation Civile et de la Météorologie, Union des Comores
Ackerman, Steven A., CIMSS, University of Wisconsin–Madison, Madison, Wisconsin
Adler, Robert, University of Maryland, College Park, Maryland
Alfaro, Eric J., Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Allan, Richard P., University of Reading, Reading, United Kingdom
Allan, Rob, Met Office Hadley Centre, Exeter, United Kingdom
Álvarez, Luis A., Instituto de Hidrología de Meteorología y Estudios Ambientales de Colombia, Bogotá, Colombia
Alves, Lincoln M., Centro de Ciencias do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo, Brazil
Amador, Jorge A., Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Andreasen, L. M., Section for Glaciers, Ice and Snow, Norwegian Water Resources and Energy Directorate, Oslo, Norway
Arce, Dayana, Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Argüez, Anthony, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Arndt, Derek S., NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Arzhanova, N. M., Russian Institute for Hydrometeorological Information, Obninsk, Russia
Augustine, John, NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Awatif, E.M., Department of Seasonal Forecast and Climate Research, Cairo Numerical Weather Prediction, Egyptian Meteorological Authority, Cairo, Egypt
Azorin-Molina, Cesar, Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Báez, Julián, Dirección de Meteorología e Hidrología de la DINAC and Universidad Católica Ntra. Sra. de la Asunción, Asunción, Paraguay
Bardin, M. U., Islamic Republic of Iranian Meteorological Organization, Iran
Barichivich, Jonathan, Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile; Center for Climate and Resilience Research, Chile; and Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
Baringer, Molly O., NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Barreira, Sandra, Argentine Naval Hydrographic Service, Buenos Aires, Argentina
Baxter, Stephen, NOAA/NWS Climate Prediction Center, College Park, Maryland
Beck, H. E., Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
Becker, Andreas, Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach, Germany
Bedka, Kristopher M., NASA Langley Research Center, Hampton, Virginia
Behrenfeld, Michael J., Oregon State University, Corvallis, Oregon
Bell, Gerald D., NOAA/NWS Climate Prediction Center, College Park, Maryland
Belmont, M., Seychelles National Meteorological Services, Pointe Larue, Mahé, Seychelles
Benedetti, Angela, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Bernhard, G. H., Biospherical Instruments, San Diego, California
Berrisford, Paul, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Berry, David I., National Oceanography Centre, Southhampton, United Kingdom
Bettolli, María L., Departamento Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Bhatt, U. S., Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
Bidegain, Mario, Instituto Uruguayo de Meteorología, Montevideo, Uruguay
Biskaborn, B., Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Bissolli, Peter, Deutscher Wetterdienst, WMO RA VI Regional Climate Centre Network, Offenbach, Germany
Bjerke, J., Norwegian Institute for Nature Research, Tromso, Norway
Blake, Eric S., NOAA/NWS National Hurricane Center, Miami, Florida
Blunden, Jessica, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Bosilovich, Michael G., Global Modelling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland
Boucher, Olivier, Institut Pierre-Simon Laplace, CNRS / UPMC, Paris, France
Boudet, Dagne, Climate Center, Institute of Meteorology of Cuba, Cuba
Box, J. E., Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Boyter, Tim, NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland

Braathen, Geir O., WMO Atmospheric Environment Research Division, Geneva, Switzerland

Brimelow, Julian, Environment and Climate Change Canada, Edmonton, Alberta, Canada

Bromwich, David H., Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio

Brown, R., Climate Research Division, Environment and Climate Change Canada, Montreal, Quebec, Canada

Buehler, S., Universitaet Hamburg, Hamburg, Germany

Bulygina, Olga N., Russian Institute for Hydrometeorological Information, Obninsk, Russia

Burgess, D., Geological Survey of Canada, Ottawa, Ontario, Canada

Calderón, Blanca, Center for Geophysical Research, University of Costa Rica, San José, Costa Rica

Camargo, Suzana J., Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Campbell, Jayaka D., Department of Physics, The University of the West Indies, Jamaica

Cappelen, J., Danish Meteorological Institute, Copenhagen, Denmark

Caroff, P., Météo-France, RSMC La Réunion

Carrea, Laura, Department of Meteorology, University of Reading, Reading, United Kingdom

Carter, Brendan R., Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, and NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Chambers, Don P., College of Marine Science, University of South Florida, St. Petersburg, Florida

Chandler, Elise, Bureau of Meteorology, Melbourne, Victoria, Australia

Cheng, Ming-Dean, National Taiwan University, and Central Weather Bureau, Taipei, Taiwan

Christiansen, Hanne H., Geology Department, University Centre in Svalbard, Longyearbyen, Norway

Christy, John R., University of Alabama in Huntsville, Huntsville, Alabama

Chung, Daniel, Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria

Chung, E.-S., Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscane, Miami, Florida

Clift, Kyle R., School of Geography, Environment, and Earth Sciences, Victoria University of Wellington, Wellington, New Zealand

Coelho, Caio A.S., CPTEC/INPE Center for Weather Forecasts and Climate Studies, Cachoeira Paulista, Brazil

Coldewey-Egbers, Melanie, German Aerospace Center (DLR) Oberpfaffenhofen, Wessling, Germany

Colwell, Steve, British Antarctic Survey, Cambridge, United Kingdom

Cooper, Owen R., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

Copland, L., Department of Geography, University of Ottawa, Ottawa, Ontario, Canada

Cross, J. N., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Crouch, Jake, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Cutié, Virgen, Climate Center, Institute of Meteorology of Cuba, Cuba

Davis, Sean M., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

de Eyto, Elvira, Marine Institute, Newport, Ireland

de Jeu, Richard A. M., VanderSat B.V., Haarlem, Netherlands

de Laat, Jos, Royal Netherlands Meteorological Institute (KNMI), DeBilt, Netherlands

DeGasperi, Curtis L., King County Water and Land Resources Division, Seattle, Washington

Degenstein, Doug, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Demircan, M., Turkish State Meteorological Service, Ankara, Turkey

Derksen, C., Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada

Di Girolamo, Larry, University of Illinois at Urbana–Champaign, Urbana, Illinois

Diamond, Howard J., NOAA/OAR Air Resources Laboratory, Silver Spring, Maryland

Dindyal, S., Mauritius Meteorological Services, Mauritius

Dlugokencky, Ed J., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado

Dohan, Kathleen, Earth and Space Research, Seattle, Washington

Dokulil, Martin T., Research Institute for Limnology, University of Innsbruck, Monderee, Austria

Dolman, A. Johannes, Department of Earth Sciences, Earth and Climate Cluster, VU University Amsterdam, Amsterdam, Netherlands

Domingues, Catia M., Institute for Marine and Antarctic Studies, University of Tasmania, and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia

Donat, Markus G., Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Dong, Shenfu, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, and Cooperative Institute for Marine and Atmospheric Science, Miami, Florida
Dorigo, Wouter A., Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
Drozdov, D. S., Earth Cryosphere Institute, and Tyumen State Oil and Gas University, Tyumen, Russia
Dunn, Robert J. H., Met Office Hadley Centre, Exeter, United Kingdom
Durán-Quesada, Ana M., Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Dutton, Geoff S., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
ElKharrim, M., Direction de la Météorologie Nationale Maroc, Rabat, Morocco
Elkins, James W., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Epstein, H. E., Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
Espinoza, Jhan C., Instituto Geofisico del Perú, Lima, Perú
Etienne-LeBlanc, Sheryl, Meteorological Department of St. Maarten, St. Maarten, Netherlands
Famiglietti, James S., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Farrell, S., Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
Fateh, S., Islamic Republic of Iranian Meteorological Organization, Iran
Fausto, R. S., Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Feely, Richard A., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
Feng, Z., FCSD/ASGC Pacific Northwest National Laboratory, Richland, Washington
Fenimore, Chris, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Fettweis, X., University of Liège, Liège, Belgium
Fioletov, Vitali E., Environment and Climate Change Canada, Toronto, Ontario, Canada
Flannigan, Mike, Department of Renewable Resources, University of Alberta, Alberta, Canada
Flemming, Johannes, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Fogt, Ryan L., Department of Geography, Ohio University, Athens, Ohio
Folland, Chris, Met Office Hadley Centre, Exeter, and School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom, and Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden, and International Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
Fonseca, C., Climate Center, Institute of Meteorology of Cuba, Cuba
Forbes, B. C., Arctic Centre, University of Lapland, Rovaniemi, Finland
Foster, Michael J., Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
Francis, S. D., National Weather Forecasting and Climate Research Centre, Nigerian Meteorological Agency, Abuja, Nigeria
Franz, Bryan A., NASA Goddard Space Flight Center, Greenbelt, Maryland
Frey, Richard A., Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin
Frith, Stacey M., Science Systems and Applications, Inc. and NASA Goddard Space Flight Center, Greenbelt, Maryland
Froidevaux, Lucien, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Ganter, Catherine, Bureau of Meteorology, Melbourne, Victoria, Australia
Gerland, S., Norwegian Polar Institute, Tromsø, Norway
Gibson, John, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
Gobron, Nadine, Joint Research Centre, European Commission, Ispra, Italy
Goldenberg, Stanley B., NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Goni, Gustavo, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Gonzalez, Idelmis T., Climate Center, Institute of Meteorology of Cuba, Cuba
Goto, A., Japan Meteorological Agency, Tokyo, Japan
Greenhough, Marianna D., Environment and Climate Change Canada, Edmonton, Alberta, Canada
Grooß, J.-U., Forschungszentrum Jülich, Jülich, Germany
Gruber, Alexander, Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
Guard, Charles “Chip”, NOAA/NWS Weather Forecast Office, Guam
Gutiérrez, J. M., Instituto de Física de Cantabria, CSIC-University of Cantabria, Santander, Spain
Haas, C., Alfred Wegener Institute, Bremerhaven, Germany, and Earth & Space Science & Engineering, York University, Toronto, Canada
Hagos, S., FCSD/ASGC Climate Physics Group, Pacific Northwest National Laboratory, Richland, Washington
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hahn, Sebastian</td>
<td>Department of Geodesy and Geoinformation, Vienna University of Technology,</td>
</tr>
<tr>
<td></td>
<td>Vienna, Austria</td>
</tr>
<tr>
<td>Haimberger, Leo</td>
<td>Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria</td>
</tr>
<tr>
<td>Hall, Brad D.</td>
<td>NOAA/OAR Earth System Research Laboratory, Boulder, Colorado</td>
</tr>
<tr>
<td>Halpert, Michael S.</td>
<td>NOAA/NWS Climate Prediction Center, College Park, Maryland</td>
</tr>
<tr>
<td>Haimberger, Leo</td>
<td>Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria</td>
</tr>
<tr>
<td>Hall, Brad D.</td>
<td>NOAA/OAR Earth System Research Laboratory, Boulder, Colorado</td>
</tr>
<tr>
<td>Hamlington, Benjamin D.</td>
<td>Center for Coastal Physical Oceanography, Old Dominion University, Norfolk,</td>
</tr>
<tr>
<td></td>
<td>Virginia</td>
</tr>
<tr>
<td>Hanna, E.</td>
<td>Department of Geography, University of Sheffield, United Kingdom</td>
</tr>
<tr>
<td>Hanssen-Bauer, I.</td>
<td>Norwegian Meteorological Institute, Blinderen, Oslo, Norway</td>
</tr>
<tr>
<td>Hare, Jon</td>
<td>NOAA/NMFS Northeast Fisheries Science Center, Woods Hole, Massachusetts</td>
</tr>
<tr>
<td>Harris, Ian</td>
<td>National Centre for Atmospheric Science, University of East Anglia, Norwich,</td>
</tr>
<tr>
<td></td>
<td>and Climatic Research Unit, School of Environmental Sciences, University</td>
</tr>
<tr>
<td></td>
<td>of East Anglia, Norwich, United Kingdom</td>
</tr>
<tr>
<td>Heidinger, Andrew K.</td>
<td>NOAA/NESDIS/STAR University of Wisconsin–Madison, Madison, Wisconsin</td>
</tr>
<tr>
<td>Heim, Richard R., Jr.</td>
<td>NOAA/NESDIS National Centers for Environmental Information, Asheville, North</td>
</tr>
<tr>
<td></td>
<td>Carolina</td>
</tr>
<tr>
<td>Hendricks, S.</td>
<td>Alfred Wegener Institute, Bremerhaven, Germany</td>
</tr>
<tr>
<td>Hernández, Marieta</td>
<td>Climate Center, Institute of Meteorology of Cuba, Cuba</td>
</tr>
<tr>
<td>Hernández, Rafael</td>
<td>Instituto Nacional de Meteorología e Hidrología de Venezuela, Caracas,</td>
</tr>
<tr>
<td></td>
<td>Venezuela</td>
</tr>
<tr>
<td>Hidalgo, Hugo G.</td>
<td>Center for Geophysical Research and School of Physics, University of Costa</td>
</tr>
<tr>
<td></td>
<td>Rica, San José, Costa Rica</td>
</tr>
<tr>
<td>Ho, Shu-peng (Ben)</td>
<td>COSMIC Project Office, University Corporation for Atmospheric Research,</td>
</tr>
<tr>
<td></td>
<td>Boulder, Colorado</td>
</tr>
<tr>
<td>Hobbs, William R.</td>
<td>Antarctic Climate and Ecosystems Cooperative Research Centre, University of</td>
</tr>
<tr>
<td></td>
<td>Tasmania, Australia</td>
</tr>
<tr>
<td>Huang, Boyin</td>
<td>NOAA/NESDIS National Centers for Environmental Information, Asheville, North</td>
</tr>
<tr>
<td></td>
<td>Carolina</td>
</tr>
<tr>
<td>Huelsing, Hannah K.</td>
<td>State University of New York, Albany, New York</td>
</tr>
<tr>
<td>Hurst, Dale F.</td>
<td>Cooperative Institute for Research in Environmental Sciences, University of</td>
</tr>
<tr>
<td></td>
<td>Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder,</td>
</tr>
<tr>
<td></td>
<td>Colorado</td>
</tr>
<tr>
<td>Jalongo, I.</td>
<td>Finnish Meteorological Institute, Helsinki, Finland</td>
</tr>
<tr>
<td>Ilajamy, J. A.</td>
<td>Nigerian Meteorological Agency, Abuja, Nigeria</td>
</tr>
<tr>
<td>Inness, Antje</td>
<td>European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom</td>
</tr>
<tr>
<td>Isaksen, K.</td>
<td>Norwegian Meteorological Institute, Blindern, Oslo, Norway</td>
</tr>
<tr>
<td>Ishii, Masayoshi</td>
<td>Climate Research Department, Meteorological Research Institute, Japan</td>
</tr>
<tr>
<td></td>
<td>Meteorological Agency, Tsukuba, Japan</td>
</tr>
<tr>
<td>Jevrejeva, Svetlana</td>
<td>National Oceanography Centre, Liverpool, United Kingdom</td>
</tr>
<tr>
<td>Jiménez, C.</td>
<td>Estrellas, and LERMA, Observatorio de Paris, PSL Research University, Paris,</td>
</tr>
<tr>
<td></td>
<td>France</td>
</tr>
<tr>
<td>Jin, Xiangze</td>
<td>Woods Hole Oceanographic Institution, Woods Hole, Massachusetts</td>
</tr>
<tr>
<td>John, Viju</td>
<td>EUMETSAT, Darmstadt, Germany, and Met Office Hadley Centre, Exeter, United</td>
</tr>
<tr>
<td>Johns, William E.</td>
<td>Rosenstiel School of Marine and Atmospheric Science, Miami, Florida</td>
</tr>
<tr>
<td>Johnsen, B.</td>
<td>Norwegian Radiation Protection Authority, Østerås, Norway</td>
</tr>
<tr>
<td>Johnson, Bryan</td>
<td>NOAA/OAR Earth System Research Laboratory, Global Monitoring Division, and</td>
</tr>
<tr>
<td></td>
<td>University of Colorado Boulder, Boulder, Colorado</td>
</tr>
<tr>
<td>Johnson, Gregory C.</td>
<td>NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington</td>
</tr>
<tr>
<td>Johnson, Kenneth S.</td>
<td>Monterey Bay Aquarium Research Institute, Moss Landing, California</td>
</tr>
<tr>
<td>Jones, Philip D.</td>
<td>Climatic Research Unit, School of Environmental Sciences, University of East</td>
</tr>
<tr>
<td></td>
<td>Anglia, Norwich, United Kingdom</td>
</tr>
<tr>
<td>Jumaux, Guillaume</td>
<td>Météo France, Direction Intermédière pour l’Océan Indien, Réunion</td>
</tr>
<tr>
<td>Kabidi, Khadija</td>
<td>Direction de la Météorologie Nationale Maroc, Rabat, Morocco</td>
</tr>
<tr>
<td>Kaiser, J. W.</td>
<td>Max Planck Institute for Chemistry, Mainz, Germany</td>
</tr>
<tr>
<td>Kass, David</td>
<td>Jet Propulsion Laboratory, California Institute of Technology, Pasadena,</td>
</tr>
<tr>
<td></td>
<td>California</td>
</tr>
<tr>
<td>Kato, Seiji</td>
<td>NASA Langley Research Center, Hampton, Virginia</td>
</tr>
<tr>
<td>Kazemi, A.</td>
<td>Islamic Republic of Iranian Meteorological Organization, Iran</td>
</tr>
<tr>
<td>Kelem, G.</td>
<td>Ethiopian Meteorological Agency, Addis Ababa, Ethiopia</td>
</tr>
<tr>
<td>Keller, Linda M.</td>
<td>Department of Atmospheric and Oceanic Sciences, University of Wisconsin–</td>
</tr>
<tr>
<td></td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Kelly, B. P.</td>
<td>Study of Environmental Arctic Change (SEARCH), and International Arctic</td>
</tr>
<tr>
<td></td>
<td>Research Center, University of Alaska Fairbanks, Fairbanks, Alaska, and</td>
</tr>
<tr>
<td></td>
<td>Center for Blue Economy, Middlebury Institute International Studies, Monterey,</td>
</tr>
<tr>
<td></td>
<td>California</td>
</tr>
<tr>
<td>Kendon, Mike</td>
<td>Met Office Hadley Centre, Exeter, United Kingdom</td>
</tr>
<tr>
<td>Kennedy, John</td>
<td>Met Office Hadley Centre, Exeter, United Kingdom</td>
</tr>
</tbody>
</table>
Macias-Fauria, M., School of Geography and the Environment, Oxford University, Oxford, United Kingdom
Malkova, G. V., Earth Cryosphere Institute, and Tyumen State Oil and Gas University, Tyumen, Russia
Manney, G., NorthWest Research Associates, and New Mexico Institute of Mining and Technology, Socorro, New Mexico
Marchenko, S. S., Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
Marengo, José A., Centro Nacional de Monitoramento e Alertas aos Desastres Naturais, Cachoeira Paulista, Sao Paulo, Brazil
Marra, John J., NOAA/NESDIS National Centers for Environmental Information, Honolulu, Hawaii
Marszelewski, Wlodzimierz, Department of Hydrology and Water Management, Nicolaus Copernicus University, Toruń, Poland
Martens, B., Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
Martínez-Güingla, Rodney, Centro Internacional para la Investigación del Fenómeno de El Niño, Guayaquil, Ecuador
Massom, Robert A., Australian Antarctic Division, and Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
Mathis, Jeremy T., NOAA/OAR Arctic Research Program, Silver Spring, Maryland
May, Linda, Centre for Ecology and Hydrology, Edinburgh, United Kingdom
Mayer, Michael, Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Mazloff, Matthew, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
McBride, Charlotte, South African Weather Service, Pretoria, South Africa
McCabe, M. F., Water Desalination and Reuse Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
McCarthy, Gerard, National Oceanography Centre, Southampton, United Kingdom
McCarthy, M., Met Office Hadley Centre, Exeter, United Kingdom
McDonagh, Elaine L., National Oceanography Centre, Southampton, United Kingdom
McGee, Simon, Bureau of Meteorology, Melbourne, Victoria, Australia
McVicar, Tim R., CSIRO Land and Water Flagship, Canberra, Australian Capital Territory, and Australian Research Council Centre of Excellence for Climate System Science, Sydney, New South Wales, Australia
Mears, Carl A., Remote Sensing Systems, Santa Rosa, California
Meier, W., NASA Goddard Space Flight Center, Greenbelt, Maryland
Mekonnen, A., Department of Energy and Environmental Systems, North Carolina A & T State University, Greensboro, North Carolina
Menezes, V. V., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Mengistu Tsidu, G., Department of Earth and Environmental Sciences, Botswana International University of Science and Technology, Palapye, Botswana, and Department of Physics, Addis Ababa University, Addis Ababa, Ethiopia
Menzel, W. Paul, Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin
Merchant, Christopher J., Department of Meteorology and National Centre for Earth Observation, University of Reading, Reading, United Kingdom
Meredith, Michael P., British Antarctic Survey, Cambridge, United Kingdom
Merrifield, Mark A., Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii
Minnis, Patrick, NASA Langley Research Center, Hampton, Virginia
Miralles, Diego G., Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
Mistelbauer, T., Earth Observing Data Centre GmbH, Vienna, Austria
Mitchum, Gary T., College of Marine Science, University of South Florida, St. Petersburg, Florida
Mitro, Srkani, Meteorological Service Suriname, Paramaribo, Suriname
Monelesan, Didier, CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia
Montzka, Stephen A., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Mora, Natalie, Center for Geophysical Research and School of Physics, University of Costa Rica, San José, Costa Rica
Morice, Colin, Met Office Hadley Centre, Exeter, United Kingdom
Morrow, Blair, Environment and Climate Change Canada, Edmonton, Alberta, Canada
Mote, T., Department of Geography, The University of Georgia, Athens, Georgia
Mudryk, L., Climate Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
Mühle, Jens, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Mullan, A. Brett, National Institute of Water and Atmospheric Research, Ltd., Wellington, New Zealand
Müller, R., Forschungszentrum Jülich, Jülich, Germany

Nerem, R. Steven, Colorado Center for Astrodynamics Research, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Newman, Louise, SOOS International Project Office, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia

Newman, Paul A., NASA Goddard Space Flight Center, Greenbelt, Maryland

Nieto, Juan José, Centro Internacional para la Investigación del Fenómeno de El Niño, Guayaquil, Ecuador

Noetzli, Jeannette, WSL Institute for Snow and Avalanche Research, Davos, Switzerland

O'Neel, S., USGS, Alaska Science Center, Anchorage, Alaska

Osborn, Tim J., Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom

Overland, J., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Oyunjargal, Lamjav, Hydrology and Environmental Monitoring, Institute of Meteorology and Hydrology, National Agency for Meteorology, Ulaanbaatar, Mongolia

Parinussa, Robert M., VanderSat B.V., Haarlem, Netherlands

Park, E-hyung, Korea Meteorological Administration, South Korea

Pasch, Richard J., NOAA/NWS National Hurricane Center, Miami, Florida

Pascual-Ramirez, Reynaldo, National Meteorological Service of Mexico, Mexico

Paterson, Andrew M., Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, Ontario, Canada

Pearce, Petra R., National Institute of Water and Atmospheric Research, Ltd., Auckland, New Zealand

Pellichero, V., Sorbonne Universités, LOCEAN-IPSL, CNRS-IRD-MNHN, Paris, France

Pelto, Mauri S., Nichols College, Dudley, Massachusetts

Peng, Liang, COSMIC Project Office, University Corporation for Atmospheric Research, Boulder, Colorado

Perkins-Kirkpatrick, Sarah E., Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia

Perovich, D., USACE, ERDC, Cold Regions Research and Engineering Laboratory, and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire

Petropavlovskikh, Irina, NOAA/OAR Earth System Research Laboratory, Global Monitoring Division, and University of Colorado Boulder, Boulder, Colorado

Pezza, Alexandre B., Greater Wellington Regional Council, Wellington, New Zealand

Phillips, C., Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA

Phillips, David, Environment and Climate Change Canada, Toronto, Ontario, Canada

Phoenix, G., Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom

Pinty, Bernard, European Commission Joint Research Centre, Ispra, Italy

Pitts, Michael C., NASA Langley Research Center, Hampton, Virginia

Pons, M. R., Agencia Estatal de Meteorología, Santander, Spain

Porter, Avalon O., Cayman Islands National Weather Service, Grand Cayman, Cayman Islands

Quintana, Juan, Dirección Meteorológica de Chile, Chile

Rahimzadeh, Fatemeh, Atmospheric Science and Meteorological Research Center, Tehran, Iran

Rajeevan, Madhavan, Earth System Science Organization, Ministry of Earth Sciences, New Delhi, India

Rayner, Darren, National Oceanography Centre, Southampton, United Kingdom

Raynolds, M. K., Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska

Razuvaev, Vyacheslav N., All-Russian Research Institute of Hydrometeorological Information, Obninsk, Russia

Read, Peter, Department of Physics, University of Oxford, Oxford, United Kingdom

Reagan, James, NOAA/INESDIS National Centers for Environmental Information, Silver Spring, Maryland, and Earth System Science Interdisciplinary Center/Cooperative Institute for Climate and Satellites—Maryland, University of Maryland, College Park, Maryland

Reid, Phillip, Australian Bureau of Meteorology and CAWRC, Hobart, Tasmania, Australia

Reimer, Christoph, Department of Geodesy and Geoinformation, Vienna University of Technology, and EODC, Vienna, Austria

Rémy, Samuel, Institut Pierre-Simon Laplace, CNRS / UPMC, Paris, France

Renwick, James A., Victoria University of Wellington, Wellington, New Zealand

Revadekar, Jayashree V., Indian Institute of Tropical Meteorology, Pune, India

Richter-Menge, J., University of Alaska Fairbanks, Fairbanks, Alaska
Rimmer, Alon, Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
Robinson, David A., Department of Geography, Rutgers University, Piscataway, New Jersey
Rodell, Matthew, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
Rollenbeck, Ruetger, Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany
Romanovsky, Vladimir E., Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, and Tyumen State University, Tyumen, Russia
Ronchail, Josyane, Université Paris Diderot/Laboratoire L’OCEAN-IPSL, Paris, France
Roquet, F., Department of Meteorology at Stockholm University (MISU), Stockholm, Sweden
Rosenlof, Karen H., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Roth, Chris, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Rusak, James A., Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, Ontario, Canada
Sallée, Jean-Bapiste, Sorbonne Universités, L’OCEAN-IPSL, Paris, France, and British Antarctic Survey, Cambridge, United Kingdom
Sánchez-Lugo, Ahira, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Santee, Michelle L., NASA Jet Propulsion Laboratory, Pasadena, California
Sarmiento, Jorge L., Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, New Jersey
Sayouri, Amal, Direction de la Météorologie Nationale Maroc, Rabat, Morocco
Scambos, Ted A., National Snow and Ice Data Center, University of Colorado Boulder, Boulder, Colorado
Schemm, Jae, NOAA/NWS Climate Prediction Center, College Park, Maryland
Schladow, S. Geoffrey, Tahoe Environmental Research Center, University of California at Davis, Davis, California
Schmid, Claudia, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Schmid, Martin, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Schoeneich, P., Institut de Géographie Alpine, University Grenoble Alpes, Grenoble, France
Schreck III, Carl J., Cooperative Institute for Climate and Satellites, North Carolina State University, Asheville, North Carolina
Schuur, Ted, Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
Selkirk, H. B., Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, Maryland
Send, Uwe, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Sensoy, Serhat, Turkish State Meteorological Service, Kalaba, Ankara, Turkey
Sharp, M., Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
Shi, Lei, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Shiklomanov, Nikolai I., Department of Geography, George Washington University, Washington, D.C.
Shimaraeva, Svetlana V., Institute of Biology, Irkutsk State University, Russia
Siegel, David A., University of California–Santa Barbara, Santa Barbara, California
Signorini, Sergio R., Science Application International Corporation, Beltsville, Maryland
Silov, Eugene, Institute of Biology, Irkutsk State University, Russia
Simha, Fatou, Division of Meteorology, Department of Water Resources, Banjul, The Gambia
Simmons, Adrian J., European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Smeed, David A., National Oceanography Centre, Southampton, United Kingdom
Smeets, C. J. P. P., Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Smith, Adam, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Smith, Sharon L., Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada
Soden, B., Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscane, Miami, Florida
Spence, Jaqueline M., Meteorological Service, Jamaica, Kingston, Jamaica
Srivastava, A. K., India Meteorological Department, Jaipur, India
Stackhouse, Paul W., Jr., NASA Langley Research Center, Hampton, Virginia
Stammerjohn, Sharon, Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado
Steinbrecht, Wolfgang, German Weather Service (DWD), Hohenpeissenberg, Germany
Stella, José L., Servicio Meteorológico Nacional, Buenos Aires, Argentina
Stennett-Brown, Roxann, Department of Physics, The University of the West Indies, Jamaica
Stephenson, Tannecia S., Department of Physics, The University of the West Indies, Jamaica
Strahan, Susan, Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, Maryland
Streletsksiy, Dimitri A., Department of Geography, George Washington University, Washington, D.C.
Swart, Sebastiaan, CSIR Southern Ocean Carbon and Climate Observatory, Stellenbosch, South Africa
Sweet, William, NOAA/NOS Center for Operational Oceanographic Products and Services, Silver Spring, Maryland
Tamar, Gerard, Grenada Airports Authority, St. George’s, Grenada
Taylor, Michael A., Department of Physics, The University of the West Indies, Jamaica
Tedesco, M., Lamont–Doherty Earth Observatory, Columbia University, Palisades, New York, and NASA Goddard Institute of Space Studies, New York, New York
Thoman, R. L., NOAA/National Weather Service, Alaska Region, Fairbanks, Alaska
Thompson, L., Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
Thompson, Philip R., Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii
Timmermans, M.-L., Yale University, New Haven, Connecticut
Timofeev, Maxim A., Institute of Biology, Irkutsk State University, Russia
Tirñanes, Joaquin A., Laboratory of Systems, Technological Research Institute, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
Tobin, Skie, Bureau of Meteorology, Melbourne, Victoria, Australia
Trachte, Katja, Laboratory for Climatology and Remote Sensing, Philipps-Universität, Marburg, Germany
Trewin, Blair C., Australian Bureau of Meteorology, Melbourne, Victoria, Australia
Trotman, Adrian R., Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados
Tschudi, M., Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, Colorado
Tweedey, Olga, Johns Hopkins University, Baltimore, Maryland
van As, D., Geological Survey of Denmark and Greenland, Copenhagen, Denmark
van de Wal, R. S. W., Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
van der Schalie, Robin, VanderSat B.V., Haarlem, Netherlands
van der Schrier, Gerard, Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands
van der Werf, Guido R., Faculty of Earth and Life Sciences, VU University Amsterdam, Netherlands
Van Meerbeeck, Cedric J., Caribbean Institute for Meteorology and Hydrology, Bridgetown, Barbados
Velicogna, I., University of California, Irvine, California
Verburg, Piet, National Institute of Water and Atmospheric Research, Hamilton, New Zealand
Vieira, G., Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, Lisbon, Portugal
Vincent, Lucie A., Environment and Climate Change Canada, Toronto, Ontario, Canada
Vömel, Holger, Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado
Vose, Russell S., NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Wagner, Wolfgang, Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
Wählin, Anna, Department of Earth Sciences, University of Gothenburg, Göteborg, Sweden
Walker, D. A., Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
Walsh, J., International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska
Wang, Bin, SOEST, Department of Meteorology, University of Hawaii, and IPRC, Honolulu, Hawaii
Wang, Chunzai, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Guangzhou, China
Wang, Junhong, State University of New York, Albany, New York
Wang, Lei, Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana
Wang, M., Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington
Wang, Sheng-Hung, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio
Wanninkhof, Rik, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Watanabe, Shohei, Tahoe Environmental Research Center, University of California at Davis, Davis, California
Weber, Mark, University of Bremen, Bremen, Germany
Weller, Robert A., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Weyhenmeyer, Gesa A., Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
Love-Brotak, S. Elizabeth, Lead Graphics Production, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Sprain, Mara, Technical Editor, LAC Group, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Veasey, Sara W., Visual Communications Team Lead, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Griffin, Jessica, Graphics Support, Cooperative Institute for Climate and Satellites—NC, North Carolina State University, Asheville, North Carolina

Misch, Deborah J., Graphics Support, TeleSolv Consulting, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Riddle, Deborah B., Graphics Support, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Young, Teresa, Graphics Support, TeleSolv Consulting, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
TABLE OF CONTENTS

List of authors and affiliations..i
Abstract..xvi

1. INTRODUCTION...1
 SIDEBAR 1.1: ESSENTIAL CLIMATE VARIABLES..2

2. GLOBAL CLIMATE..5
 a. Overview...5
 b. Temperature...5
 1. Global surface temperature...5
 2. Lake surface temperature...5
 3. Land surface temperature extremes ..5
 4. Lower and mid-tropospheric temperature..5
 5. Lower stratospheric temperature..5
 c. Cryosphere...5
 1. Permafrost thermal state...5
 2. Northern Hemisphere continental snow cover extent ..5
 3. Alpine glaciers ...5
 d. Hydrological cycle...5
 1. Surface humidity..5
 2. Total column water vapor ...5
 3. Upper tropospheric humidity ..5
 4. Precipitation ...5
 5. Cloudiness ..5
 6. River discharge and runoff ...5
 7. Groundwater and terrestrial water storage ..5
 8. Soil moisture ...5
 9. Monitoring global drought using the self-calibrating Palmer drought severity index5
 10. Land evaporation...5
 e. Atmospheric circulation..5
 1. Mean sea level pressure and related modes of variability ..5
 2. Surface winds ...5
 3. Upper air winds ..5
 f. Earth radiation budget...5
 1. Earth radiation budget at top-of-atmosphere ..5
 2. Mauna Loa clear-sky “apparent” solar transmission ..5
 g. Atmospheric composition..5
 1. Long-lived greenhouse gases..5
 2. Ozone-depleting gases ..5
 3. Aerosols...5
 4. Stratospheric ozone ..5
 5. Stratospheric water vapor ...5
 6. Tropospheric ozone ..5
 7. Carbon monoxide..5
 h. Land surface properties...5
 1. Land surface albedo dynamics ..5
 2. Terrestrial vegetation dynamics ..5
 3. Biomass burning ..5
 SIDEBAR 2.1: THE STATE OF THE MARTIAN CLIMATE ..60

3. GLOBAL OCEANS...63
 a. Overview...63
 b. Sea surface temperatures ...63
 c. Ocean heat content..63
 SIDEBAR 3.1: CHANGES IN THE NORTHEAST U.S. SHELF ECOSYSTEM AND FISHERIES69
 d. Salinity ...69
 1. Introduction...69
 2. Sea surface salinity ..69
 3. Subsurface salinity ..69
7. REGIONAL CLIMATES .. 173
 a. Overview ... 173
 b. North America ... 173
 1. Canada ... 173
 2. United States ... 175
 SIDEBAR 7.1: THE EXTREME 2016 WILDFIRE IN FORT MCMURRAY, ALBERTA, CANADA ... 176
 3. Mexico ... 179
 c. Central America and the Caribbean 180
 1. Central America ... 180
 2. Caribbean .. 183
 d. South America ... 185
 1. Northern South America .. 186
 2. Central South America .. 187
 SIDEBAR 7.2: DROUGHT IN BOLIVIA: THE WORST IN THE LAST 25 YEARS ... 188
 3. Southern South America ... 190
 e. Africa .. 191
 1. Northern Africa ... 192
 2. West Africa ... 193
 3. Eastern Africa ... 195
 4. Southern Africa ... 196
 5. Western Indian Ocean island countries 198
 f. Europe and the Middle East ... 200
 1. Overview ... 201
 2. Central and western Europe ... 203
 3. The Nordic and the Baltic countries 204
 SIDEBAR 7.3: THE NAKED SHEEP—RAINSTORMS, FLOODS, AND COLD WEATHER CAUSED BY EXTRAORDINARY CYCLONIC ACTIVITY IN MAY/JUNE 2016 IN CENTRAL EUROPE .. 205
 4. Iberian Peninsula .. 207
 5. Eastern Europe .. 208
 6. Mediterranean and Balkan countries 209
 7. Middle East ... 210
 g. Asia .. 212
 1. Overview ... 212
 2. Russia ... 212
 3. East and Southeast Asia .. 214
 4. South Asia .. 217
 SIDEBAR 7.4: ANOMALOUS TYPHOON ACTIVITY IN THE NORTHWESTERN PACIFIC AND EXTREME PRECIPITATION IN NORTHERN JAPAN IN AUGUST 2016 ... 217
 5. Southwest Asia ... 220
 h. Oceania .. 221
 1. Overview ... 221
 2. Northwest Pacific and Micronesia 221
 3. Southwest Pacific ... 223
 4. Australia .. 224
 SIDEBAR 7.5: STRONG NEGATIVE INDIAN OCEAN DIPOLE ASSISTS IN AUSTRALIA’S WETTEST MAY—OCTOBER ... 227
 5. New Zealand ... 228
In 2016, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued to increase and reach new record highs. The 3.5 ± 0.1 ppm rise in global annual mean carbon dioxide from 2015 to 2016 was the largest annual increase observed in the 58-year measurement record. The annual global average carbon dioxide concentration at Earth’s surface surpassed 400 ppm (402.9 ± 0.1 ppm) for the first time in the modern atmospheric measurement record and in ice core records dating back as far as 800,000 years.

One of the strongest El Niño events since at least 1950 dissipated in spring, and a weak La Niña evolved later in the year. Owing at least in part to the combination of El Niño conditions early in the year and a long-term upward trend, Earth’s surface observed record warmth for a third consecutive year, albeit by a much slimmer margin than by which that record was set in 2015. Above Earth’s surface, the annual lower troposphere temperature was record high according to all datasets analyzed, while the lower stratospheric temperature was record low according to most of the in situ and satellite datasets.

Several countries, including Mexico and India, reported record high annual temperatures while many others observed near-record highs. A week-long heat wave at the end of April over the northern and eastern Indian peninsula, with temperatures surpassing 44°C, contributed to a water crisis for 330 million people and to 300 fatalities.

In the Arctic the 2016 land surface temperature was 2.0°C above the 1981–2010 average, breaking the previous record of 2007, 2011, and 2015 by 0.8°C, representing a 3.5°C increase since the record began in 1900. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 24 March, the sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, tying with 2015 at 7.2% below the 1981–2010 average. The September 2016 Arctic sea ice minimum extent tied with 2007 for the second lowest value on record, 33% lower than the 1981–2010 average. Arctic sea ice cover remains relatively young and thin, making it vulnerable to continued extensive melt. The mass of the Greenland Ice Sheet, which has the capacity to contribute ~7 m to sea level rise, reached a record low value. The onset of its surface melt was the second earliest, after 2012, in the 37-year satellite record.

Sea surface temperature was record high at the global scale, surpassing the previous record of 2015 by about 0.01°C. The global sea surface temperature trend for the 21st century-to-date of +0.162°C decade⁻¹ is much higher than the longer term 1950–2016 trend of +0.100°C decade⁻¹. Global annual mean sea level also reached a new record high, marking the sixth consecutive year of increase. Global annual ocean heat content saw a slight drop compared to the record high in 2015.

Alpine glacier retreat continued around the globe, and preliminary data indicate that 2016 is the 37th consecutive year of negative annual mass balance. Across the Northern Hemisphere, snow cover for each month from February to June was among its four least extensive in the 47-year satellite record. Continuing a pattern below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska and at the Canadian observatory on northernmost Ellesmere Island.

In the Antarctic, record low monthly surface pressures were broken at many stations, with the southern annular mode setting record high index values in March and June. Monthly high surface pressure records for August and November were set at several stations. During this period, record low daily and monthly sea ice extents were observed, with the November mean sea ice extent more than 5 standard deviations below the 1981–2010 average. These record low sea ice values contrast sharply with the record high values observed during 2012–14. Over the region, springtime Antarctic stratospheric ozone depletion was less severe relative to the 1991–2006 average, but ozone levels were still low compared to pre-1990 levels.

Closer to the equator, 93 named tropical storms were observed during 2016, above the 1981–2010 average of 82, but fewer than the 101 storms recorded in 2015. Three basins—the North Atlantic, and eastern and western North Pacific—experienced above-normal activity in 2016. The Australian basin recorded its least active season since the beginning of the satellite era in 1970. Overall, four tropical cyclones reached the Saffir–Simpson category 5 intensity level.

The strong El Niño at the beginning of the year that transitioned to a weak La Niña contributed to enhanced precipitation variability around the world. Wet conditions were observed throughout the year across southern South America, causing repeated heavy flooding in Argentina, Paraguay, and Uruguay. Wetter-than-usual conditions were also observed for eastern Europe and central Asia, alleviating the drought conditions of 2014 and 2015 in southern Russia. In the United States, California had its first wetter-than-average year since 2012, after being plagued by drought for several years. Even so, the area covered by drought in 2016 at the global scale was among the largest in the post-1950 record. For each month, at least 12% of land surfaces experienced severe drought conditions or worse, the longest such stretch in the record. In northeastern Brazil, drought conditions were observed for the fifth consecutive year, making this the longest drought on record in the region.

Dry conditions were also observed in western Bolivia and Peru; it was Bolivia’s worst drought in the past 25 years. In May, with abnormally warm and dry conditions already prevailing over western Canada for about a year, the human-induced Fort McMurray wildfire burned nearly 590,000 hectares and became the costliest disaster in Canadian history, with $3 billion (U.S. dollars) in insured losses.