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Introduction. At the beginning of December 2015, the 
Indian state of Tamil Nadu experienced extensive 
f looding. November had been the second wettest 
month in Chennai (1049 mm) in more than 100 
years, but the main floods were caused by one day of 
extreme precipitation on 1 December. The commer-
cial center, Chennai (formerly known as Madras), re-
ported 24-hr precipitation from 0830 LT ranging from 
77 to 494 mm at 18 stations, with a citywide-average 
of 286 mm (Fig. 17.1a). The city was declared a disaster 
area on 2 December after many areas, including the 
airport, were flooded. Although in the satellite-based 
CMORPH analysis the largest precipitation amounts 
were recorded south of Chennai (Fig. 17.1b), we con-
centrate our analysis on this city because the impact 
was largest here. Damages were estimated to be as 
high as $3 billion (U.S. dollars; Wall Street Journal, 
11 December 2015). 

This part of India has its main rainy season during 
the northeast monsoon (Srinivasan and Ramamurthy 
1973; Yadav 2013) in October–December. Sea surface 
temperature (SST) in the Bay of Bengal typically 
exceeds the threshold for deep convection through-
out the year. Weak vertical shear during May and  
October–December (months prior to and imme-
diately following the southwest monsoon) makes 
conditions ideal for tropical storms and cyclones that 
make landfall on the southeastern coast of India. The 
extreme rainfall events have sizes of O(100) km. 

SST in the northern and western Bay of Bengal has 
hardly increased over the last 35 years, in contrast to 
most of the rest of the world (Fig. 17.1c). This is likely 
because of increased air pollution in the region, the 

“brown cloud,” that blocks more sunlight counteract-
ing the warming due to greenhouse gases, especially 
in premonsoon maximum temperatures (Padma 
Kumari et al. 2007; Wild 2012). The CMIP5 historical 
greenhouse gas (GHG) experiments without aerosols 
indeed indicate a larger trend in the Bay of Bengal (sea 
points in 10°–25°N, 80°–90°E), 1.6°C (100 yr)−1 over 
October–December from 1970 to 2005, than the his-
torical experiments, 1.3°C (100 yr)−1. This is still high-
er than the observed trend of 0.8°C (100 yr)−1. In line 
with this, SST anomalies were lower than elsewhere 
in the Indian Ocean in November–December 2015, 
although there was a warmer patch just off the coast 
of Chennai with 0.6°–0.8°C anomalies (Fig. 17.1d). El 
Niño was also very strong these months. 

Observational analysis. We analyze two datasets of 
daily station precipitation in the region. The public 
GHCN-D dataset (Menne et al. 2016) has 50 stations 
with at least 40 years of data in the area 10°–15°N, 
79.5°–81°E for a total of 3504 station-years. These 
coastal stations have similar climatologies of the wet-
test day of the year (RX1day). However, all but two 
of the series end in 1970. The India Meteorological 
Department (IMD) provided us with 19 nonpublic 
series with mean RX1day > 90 mm from the region 
for 1969–2013. Five of these did not have more than 
one or two years of valid data. One station had zeroes 
all through the wet season in a few years and was also 
discarded. Seven stations had monthly mean totals in 
2001–04 that were about a factor of 10 smaller than 
satellite data; these years were deleted. A few very 
high precipitation amounts (≥ 500 mm) were on dry 
or moderately rainy days at other stations or in the 
satellite record and did not show up in flood records, 
so they were removed (displaced decimal points are 
common). After this quality-control procedure, 407 
station years with at least 80% valid data in October–
December remained. Both datasets were analyzed 
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separately with a fit to a generalized extreme value 
(GEV) distribution that scales with time (cf. Vautard 
et al. 2015), or the (ERSSTv4) Niño‒3.4 index, assum-
ing all stations have identical rainfall distributions. 
The uncertainties were estimated using a nonpara-
metric bootstrap that takes spatial correlations into 
account with a 2D moving-block procedure analogous 
to the 1D one for temporal autocorrelations. 

Both datasets show that the 494 mm observed in 
the Tambaram suburb is a rare event, with return 

times of 600–2500 years (95% confidence inter-
val; GHCN-D, assuming a stationary climate) and 
300–4000 years (IMD; current climate, red lines in 
Fig. 17.2a) respectively. This means that the odds of 
receiving such extreme precipitation at a givenstation 
are less than 0.2% each year. The chance of such an 
amount occurring at any station in the region is high-
er. The rainfall in this area has around 5 degrees of 
freedom, so the return time for such a high amount in 
any rain gauge is five times lower. In fact, there is one 

Fig. 17.1. (a) Rain gauge observations from 0830 LT of 1 Dec 2015 to 0830 LT of 2 Dec 2015 (mm day−1). 
The city of Chennai is visible in gray around the stations Nungambakkan and DGP Office in the city 
center. (b) Analyzed precipitation on 0000–2400 UTC 1 Dec 2015 (mm day−1; CMORPH, Joyce et 
al. 2004), the box indicates the region of panel (a). (c) Observed SST trend (°C yr−1) over the Bay of 
Bengal 1981–2015 (SST OI v2, Smith et al. 2008). The box indicates the region of panel (b). (d) Ob-
served anomalies (°C) in Nov–Dec 2015. The blue box denotes the region investigated, the land area 
in 10°–15ºN, 79.5°–81ºE.
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event in the GHCN-D dataset with higher precipita-
tion: 500 mm at Vedaranayam on 18 November 1918.

The GHCN-D dataset (mainly up to 1970) shows 
no trend, whereas the IMD dataset shows a nonsig-
nificant negative trend starting in 1969, see Figs. 
17.2a,b. We conclude that there is no observational 
evidence for a positive trend. The 95% range is a 
factor 0.14–2.2 increase in probability since 1970. A 
similar analysis using the Niño‒3.4 index as covariate 
rather than time shows that there is a slight increase 
during El Niño, which is not significant at p < 0.1 
(one-sided). Total November–December precipitation 
is very weakly correlated with the Niño‒3.4 index (r 
= 0.18, correlations reach r > 0.4 further south along 
the coast). There is a stronger connection between 
mean precipitation and SST in the Bay of Bengal 
(10°–25°N, 80°–95°E, r = 0.30), which supports our 
hypothesis that the lack of trend in this area over the 
last 40 years is responsible for the lack of trend in 
extreme precipitation. 

Global coupled climate models. We analyzed the rainfall 
extremes in a relatively high-resolution ensemble of 
model runs, 16 historical/RCP 8.5 experiments us-
ing the EC-Earth 2.3 model (Hazeleger et al. 2010) at 
T159, about 150-km resolution. This model shows a 
strong positive trend in SST over the Bay of Bengal of 
about 0.2°C (10 yr−1) over 1975–2015, which contra-
dicts the observed trend. We therefore do not consider 
its modeled increase in the probability of high RX1day 
by a factor 1.6–6 (95% CI). 

The CMIP5 ensemble contains many models with 
a hard upper boundary of rainfall in the grid box cor-
responding to Chennai, in contrast to the observed 
probability distribution function (PDF; Fig. 17.2b), 
hence we could not use it either.

Regional climate model. We furthermore analyze the 
rainfall extremes in the regional atmosphere-only 
general circulation model HadRM3P, used in the 
weather@home distributed computing framework 
(Massey et al. 2015). The regional model over the 
CORDEX South Asian region (Giorgi et al. 2009) 
was employed at a 0.44° × 0.44° resolution with a 
5-min time step is driven by the Hadley Centre model 
HadAM3P at 1.875° × 1.25° × 15-min resolution. The 
initial conditions of the global model are perturbed 
at the first of December 2014 of every 13-month 
simulation to derive a set of very large ensembles of 
possible weather in the region of interest. Three dif-
ferent ensembles are simulated: 

1) Simulations of the 13 months from December 
2014 to December 2015 driven by observed (2015) 

Fig. 17.2. (a) Maximum precipitation in Oct–Dec at 
19 stations from 1969 to 2014 with a GEV fit in which 
the position parameter (thick red line) and scale 
parameter (difference between red lines) depend 
exponentially on time with their ratio constant. (b) 
Return time plot of these data with the GEV fit for 
1970 (blue) and for 2015 (red) and 95% uncertainties, 
the observations are also shown twice, shifted up 
(blue) and down (red) with the fitted trend. (c) Return 
times of maximum land grid box precipitation in the 
region 10°–15ºN, 77°–82ºE in the SST-forced regional 
model in the 2015 SST forced ensemble (red), the 2015 
counterfactual world without anthropogenic emis-
sions (blue) and the 1985–2014 climatology (green).  
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SSTs and greenhouse gas concentrations (n = 2900), 
2) Simulations of the same time frame in a coun-

terfactual simulation (n = 6960) under preindustrial 
greenhouse gas and aerosol forcing and natural SSTs 
constructed by subtracting 11 different estimates of 
the human-induced warming pattern from the 2015 
observed SSTs (Schaller et al. 2016), and

3) Climatological simulations of the years 1985–
2014 with observed forcings to evaluate the reliability 
of the model as well as estimating the influence of the 
2015 SSTs on the likelihood of the rainfall extremes.

Quantile-quantile assessments of the modeled 
precipitation reveal a small overestimation of the ab-
solute values of precipitation but good representation 
of the overall distribution. Pressure over the region of 
interest is consistently underestimated. Because the 
biases in the model seem to be mainly an offset and we 
are comparing the model with itself in terms of mag-
nitudes, we refrain from applying a bias correction. 
The SST difference between actual and preindustrial 
situations in the Bay of Bengal is about 0.5°C (Schaller 
et al. 2016, their Supplemental Fig. S17.3), in line with 
the observed trend. 

To derive results comparable to the statistical 
analysis of the 19 stations described previously, we 
analyze daily maximum grid box precipitation in 
the October to November period over the region 
10°–15°N, 77°–82°E. 

Comparing the two ensemble simulations for 2015 
(Fig. 17.2c), we find again a nonsignificant negative 
change in the likelihood of extreme precipitation 
events with a return time above 100 years due to an-
thropogenic emissions. Comparing the simulations 
of 2015 with an ensemble of simulations of daily 
extreme rainfall from 1985 to 2014 reveals a small 
positive influence of the observed SST patterns on 
the likelihood of extreme rainfall. The analysis does 
not allow us to estimate the influence of the observed 
El Niño, only the global SST patterns. Qualitatively, 
the results are robust under different possible ways 
of characterizing the event spatially and temporally, 
by excluding the westernmost parts of the region or 
analyzing monthly data.

 
Discussion and conclusions. The observational analysis 
found no signal for a positive trend in extreme one-
day precipitation at the southeastern coast of India 
over 1900–70, nor over 1970–2014. Coupled models 
show more extreme one-day precipitation events 
from 1970–2015, but a large ensemble of SST-forced 
models again shows no increase in the probability of 
extreme one-day precipitation due to anthropogenic 

emissions. A plausible factor is the lack of increase 
in SST in the western Bay of Bengal over the last 
40 years, which is not reproduced correctly by the 
coupled models but is more realistic in the SST-forced 
model. This precludes an attribution of the floods to 
anthropogenic factors, probably to a large extent due 
to the two main pollutants, greenhouse gases and 
aerosols, having opposing effects. Over land this op-
position is discussed by Padma Kumari et al. (2007) 
and Wild (2012).

There is a small but clear increase in probability 
of extremes in the SST-forced regional model, asso-
ciated with El Niño and other SST anomalies. In the 
observations, the ENSO signal is also present but not 
statistically significant. 
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