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3. CMIP5 MODEL-BASED ASSESSMENT OF 
ANTHROPOGENIC INFLUENCE ON RECORD GLOBAL 

WARMTH DURING 2016

Thomas R. KnuTson, Jonghun Kam, FanRong Zeng, and andRew T. wiTTenbeRg

According to CMIP5 simulations, the 2016 record global warmth was only possible due to substantial 
centennial-scale anthropogenic warming. Natural variability made a smaller contribution to the January–

December 2016 annual-mean global temperature anomaly.

Global annual-mean surface temperature set a record 
high in 2016 in at least three observational datasets—
GISTEMP (Hansen et al. 2010), HadCRUT4.5 (Morice 
et al. 2012), and NOAA (Karl et al. 2015)—exceeding 
the previous record set in 2015 (Fig. 3.1a). In contrast, 
the last global mean annual cold record occurred 
around 1910. Record global warmth implies some 
record warmth on regional scales as well (Kam et al. 
2016), which can cause important impacts such as 
thermal stress, coral bleaching, and melting of sea and 
land ice (IPCC 2013). Decreased land ice, combined 
with ocean heat uptake, contributes to sea level rise, 
which can exacerbate coastal flooding extremes (e.g., 
Lin et al. 2016).

Figure 3.1 compares observed global-mean 
temperature anomalies with simulations from the 
Coupled Model Intercomparison Project 5 (CMIP5; 
Taylor et al. 2012; Table ES3.1). Record warmth in 2016 
largely follows a pronounced century-scale warming 
trend, and was far outside the range of internal (un-
forced) climate variability sampled across over 24 000 
years of CMIP5 Control simulations (Fig. 3.1c). It was 
also well outside the range of CMIP5 Natural Forcing-
Only simulations incorporating solar and volcanic 
forcing changes (Fig. 3.1b). In contrast, the observed 
warming lies within the range of CMIP5 All-Forcing 
simulations that include both anthropogenic and 
natural forcing (Fig. 3.1a). These results suggest that 
observed global-mean temperatures emerged from 

the natural variability background (natural forcing 
response plus internal variability) around 1980, and 
have become increasingly detectable since.

The inconsistency of obser ved long-term 
global warming with simulated natural variability 
(detection), and its consistency with simulations 
incorporating anthropogenic forcing (attribution), are 
in agreement with previous studies and assessments 
(e.g., IPCC 2001, 2007, 2013; Knutson et al. 2013; 
Kam et al. 2016). Detection and attribution of human 
inf luence on global mean temperature is well-
established in the climate sciences, including through 
more sophisticated approaches than shown here (e.g., 
regressions or pattern scaling; Bindoff et al. 2013 and 
references therein). The adequacy of CMIP5 model 
simulations of internal variability for detection and 
attribution has also been assessed previously (e.g., 
IPCC 2013; Knutson et al. 2013, 2016).

Figure 3.1d examines shorter term global-mean 
temperature variability since 1970, highlighting the 
timing of four major El Niño events and two major 
volcanic eruptions. The 2015/16 global temperature 
event appears as a temporary bump with a magnitude 
(for January–December 2016) of a little over 0.1°C, 
superimposed on a long-term warming trend of about 
1°C—the latter being largely attributable to anthro-
pogenic forcing according to CMIP5 models (Figs. 
3.1a,b). While the El Niño events of 1972/73, 1997/98, 
and 2015/2016 have apparent warming signatures in 
global temperature, the 1982/83 event’s imprint was 
apparently muted by the almost-coincident eruption 
of El Chichón.

Monthly maps of observed surface temperature 
internal climate variability for 2016 are discussed in 
the online supplement material. From these and pre-
vious studies (e.g., Trenberth et al. 2002) we infer that 
the short-term calendar-year global mean warmth 
in 2015 and 2016 is likely to have been at least partly 
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El Niño-driven. Note that a calendar-year average 
generally leads to some cancellation between El Niño 
and the subsequent La Niña, since ENSO’s equatorial 
Pacific SST anomalies tend to peak near the end of 
the calendar year, and its effect on global-mean tem-
perature peaks a few months later.

For event attribution, we estimate the occurrence 
rate of annual-mean global temperature anomalies 
reaching 2015 or 2016 observed levels for simulated 
climates with and without anthropogenic forcing. 
Figure 3.2 explores the upper limits of simulated 
natural variability contributions to 2015 and 2016 
global temperature. It depicts the maximum internal 
variability anomalies (from long control runs) and the 
Natural and Anthropogenic Forcing ensemble 2016 
responses. Results are shown for each of seven CMIP5 

models having at least two ensemble members each 
for the Natural-Forcing, All-Forcing, and RCP8.5 sce-
narios (the latter are needed for extending All-Forcing 
to 2016). Within this framework, the anthropogenic 
contribution dominates over the Natural Forcing 
and potential internal variability contributions. 
Figure 3.2 shows the ensemble-mean and most- and 
least-conservative estimates (see caption), across the 
models, of the natural + internal variability contribu-
tion to 2016’s anomaly. None of the CMIP5 models 
produce natural + internal variability large enough 
to reproduce the observed 2015 and 2016 extremes—
even using very long control simulations (in one case 
5200 years). We therefore conclude that, according to 
the CMIP5 simulations, 2015- or 2016-level warmth 
(relative to the ~1900 baseline) never occurs without 

Fig. 3.1. Observed global-mean temperature anomalies vs. CMIP5 simulations (°C; 1881–1920 reference period). 
(a) CMIP5 All-Forcing (anthropogenic plus natural forcing) grand ensemble mean of individual ensemble means 
from 36 models (thick red curve); ±2 std. dev. (red shading) and minimum–maximum spread (dashed red) of 
annual means across individual simulations; and observed GISTEMP (black), HadCRUT4.5 (purple) and NOAA 
(green) anomalies. (b) As in (a) but for natural forcings (18 models; blue curves and shading). (c) Observed (GIS-
TEMP; black) and All-Forcing grand ensemble mean (red) anomalies compared to 200-year segments from 36 
CMIP5 control runs (orange). (d) 12-month running mean anomalies for GISTEMP observations (thick black; 
monthly anomalies are thin black) and CMIP5 All-Forcing (red) and Natural Forcing (blue) grand ensemble 
means. GISTEMP observed annual means (Jan–Dec) for 2015 and 2016 are highlighted by circles in panels (a), 
(b), and (d). See also online supplement materials.
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anthropogenic forcing, and is only possible with an-
thropogenic forcing.

Estimated contributions from different forcing sets 
to the 2016 observed global mean anomaly (1.27°C)—
with internal variability computed as a residual—are 
presented in Table ES3.1 for each model. Using all 36 
CMIP5 models, the mean estimated internal variabil-
ity residual for 2016 was 0.12°C (10% of the total 2016 
anomaly relative to 1881–1920). For the 12 models 
having at least two All-Forcing and RCP8.5 scenario 
members, the internal variability estimate was 0.09°C 
(7%). For the seven of twelve models that also passed a 
consistency test for 2011 and 2016 (online supplement 
material), the internal variability mean (and range) 

were 0.14°C (−0.14° to +0.31°C), that is, 11% (−11% to 
+24%). There were also seven models having at least 
two ensemble members each for All-Forcing, RCP8.5, 
and Natural Forcing scenarios; their ensemble-mean 
contributions were 1.04°C (82%) from Anthropogenic 
Forcing, and 0.16°C (13%) from Natural-Forcing. 
Using only the four of these seven models that also 
passed the consistency test, the mean and range of 
contributions across the models were 0.88°C (69%), 
with range 0.71° to 1.05 °C (56% to 83%) for Anthro-
pogenic Forcing, and 0.18°C (14%) with range 0.15° to 
0.25°C (12% to 20%) for Natural Forcing.

The margins of error for some of our assessments 
are also illustrated in Fig. 3.2. Using each of seven 
models’ ensemble Natural Forcing response estimates, 
the internal variability in these models would need to 
be 2.2 to 6.4 (1.9 to 5.6) times larger than simulated for 
the Natural Forcing plus internal variability alone to 
reach the 2016 (2015) observed value, even given the 
model’s most extreme internal event. For example, for 
GFDL-CM3, the Natural-Forcing estimate for 2016 is 
+0.16°C and the model’s strongest internal variability 
event (0.50°C) would need to be multiplied by 2.22 
to reach the observed anomaly level (1.27°C). Alter-
natively, using each model’s most extreme internal 
variability event, the Natural Forcing mean response 
from the models would need to be 3.6 to 11 (3.1 to 9.7) 
times larger than simulated to match the observed 
temperature anomalies for 2016 (2015).

The fraction of attributable risk (FAR) is defined 
as FAR = 1 − (p0/p1), where p0 is the modeled prob-
ability of the event in a climate without anthropogenic 
influence, and p1 is the probability in a climate with 
anthropogenic influence (Stott et al. 2004). For the 
CMIP5 models, we have already shown that p0 ~ 0; 
that is, an event like 2015 or 2016 appears to be es-
sentially impossible under the available estimates 
of natural forcings, without including anthropo-
genic forcings. However, events as warm as 2016 are 
clearly possible in at least some of the All-Forcing 
experiments with anthropogenic forcing (Fig. 3.1a). 
We therefore estimated ensemble and individual 
model p1’s, for the seven models having more than 
one All-Forcing/RCP8.5 ensemble member and that 
also passed the consistency test (online supplement 
material); ensemble p1 was estimated from the grand 
ensemble mean and the aggregate distribution of an-
nual anomalies from the individual control runs. The 
estimated p1 for exceeding the 2015 (2016) observed 
threshold is 0.86 (0.42), implying a return period 
of only 1.2 (2.4) years. However, these return time 
estimates are highly uncertain, as they depend on 

Fig. 3.2. Observed 2015 (dashed black line) and 2016 
(solid) global mean temperature anomalies (°C, relative 
to 1881–1920) vs. simulated 2016 anomalies from the 
seven CMIP5 models having multiple All-Forcing/
RCP8.5 and Natural Forcing ensemble members. Each 
model’s largest positive internal variability anomaly 
(green) is combined with that model’s ensemble 
mean Natural- (blue) or Anthropogenic-forcing (red, 
computed as All-Forcing minus Natural-Forcing) 
response. The “Multimodel” estimate uses the grand 
ensemble mean of ensemble means of the Natural and 
Anthropogenic responses along with the average of 
the maximum positive internal variability anomalies 
of the individual models. The “Most conservative” 
combines the largest internal and Natural Forcing 
contributions, from any model, with the smallest 
anthropogenic contribution. The “Least conservative” 
combines the smallest maximum internal and smallest 
natural forcing, from any of model, with the largest 
anthropogenic contribution.
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 REFERENCES(uncertain) estimates of the All-Forcing response for 
2015 and 2016; even in this case where we exclude 
inconsistent CMIP5 models, the return time for the 
2016 threshold ranges from 1 to 39 years. We have not 
attempted to estimate return times for cases where 
the event is outside the modeled distribution, or for 
the observations directly (with 2016 being the single 
most extreme event in the observed distribution). We 
conclude that for the seven individual CMIP5 mod-
els having adequate numbers of ensemble members 
and having All-Forcing runs that are consistent with 
recent observations, the risk of exceeding the 2015 
(2016) threshold is entirely attributable to anthropo-
genic forcing (FAR = 1).

Our analysis has important caveats. The internal 
variability of the climate system and the response to 
historical forcings have been estimated here using a 
combination of observations and models following 
Knutson et al. (2013, 2016). Uncertainties also remain 
in historical climate forcings by various agents, in-
cluding anthropogenic aerosols. However, simulated 
internal variability would need to be more than twice 
as large as the most extreme case found in the CMIP5 
models, for even the most extreme simulated natural 
warming event to match the 2016 observed record.

Summary. According to the CMIP5 simulations, 
2016’s record global January–December warmth 
would not have been possible under climate condi-
tions of the early 1900s—anthropogenic forcing was 
a necessary condition (Hannart et al. 2016) for the 
event. Anthropogenic forcing contributed most of 
this warmth (relative to 1881–1920 conditions), while 
natural forcings and intrinsic variability (including 
El Niño) made relatively small contributions to the 
January–December 2016 global mean.
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