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July 2019 saw record-breaking wildfires burning 
3,600 km2 in Alaska. The GFDL Earth system mod-
el indicates a threefold increased risk of Alaska’s 
extreme fires during recent decades due to primarily 
anthropogenic ignition and secondarily climate-in-
duced biofuel abundance.

W ith more than 700 wildfires and over two million 
acres burned in Alaska, 2019 was ranked 8th 
and 11th in Alaska’s history in fire counts and 

burned area, respectively (Alaska Interagency Coordina-
tion Center 2020). Smoke plumes from July 2019 fires de-
graded air quality over most of Alaska, inducing the first 
ever dense smoke advisory (visibility less than a mile) for 
Anchorage, and some of the world’s worst air quality in 
Anchorage and Fairbanks (Di Liberto 2019). Ignited by a 
lightning strike, the Swan Lake Fire, the most expensive 
fire in Alaska history, originated in the Kenai National 
Wildlife Refuge in southern Alaska early June and lasted 
for several months (Hollander 2019).

Extremely hot and dry conditions supported the un-
usually early and strong peak of the Alaska fire season in 
July 2019 (Fig. 1). Anomalous heat in spring and early sum-
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mer of 2019 (Fig. 1a) and continued hot and dry conditions into July (Fig. 1b) enhanced 
biofuel flammability, especially over the southern and central forests in Alaska, lead-
ing to the record-breaking July burned area fraction in these regions (Fig. 1c). Indeed, 
2019 saw Alaska’s hottest July on record, during which its largest city, Anchorage, had 
a daily maximum temperature exceeding 90°F (32°C) for the first time (Di Liberto 2019). 
To assess the risk of extreme fires in Alaska, a previous study analyzed a Buildup In-
dex (BUI) for potential biofuel availability and flammability, derived from cumulative 
scoring of daily temperature, relative humidity, and precipitation (Partain et al. 2016). 
Based on the BUI, Partain et al. (2016) attributed the increased risk of an extreme Alas-
kan fire season to anthropogenic climate change, especially warming. However, this 
weather-based BUI did not account for direct anthropogenic influence on fire ignition 
or more complex response of the land biosphere to human-induced climate change 
and CO2 fertilization.

Indeed, the human-induced increase in the risk of extreme fires in Alaska is also 
likely attributed to elevated abundance of biofuel (Liu et al. 2015) and increased number 
of human-ignited fires (Kasischke et al. 2010), in addition to the higher chance of biofu-
el drying (Pithan and Mauritsen 2014). High-latitude ecosystems such as Alaska are be-
lieved to be most vulnerable to warming under anthropogenic climate change (Pithan 
and Mauritsen 2014). The CO2 fertilization and excessive heat have resulted in an ex-
pansion and early-season growth of vegetation in the boreal forests (Mao et al. 2016; Liu 
et al. 2015), potentially causing early fuel abundance, more frequent and long-lasting 
fire events, and dense smoke releases, such as those seen in July 2019. Furthermore, an 
analysis of Alaska’s fire ignition database indicated that human presence increased the 
number of ignitions near settlements, roads, and rivers during the past decades (Ka-
sischke et al. 2010). These complex interactions between fire, climate, land ecosystem, 
and human activity, cannot be neglected in attribution studies of wildfires.

The present study takes advantage of the modeling capability of the Geophysical 
Fluid Dynamics Laboratory (GFDL) Earth System Model 4.1 (ESM4.1) to simulate all 

Fig. 1. Observed meteorological conditions in Alaska during the June to July fire season in 2019. (a),(b) Anomalies in 2-m air 
temperature (°C; color) and precipitation (contours represent 30%, 50%, and 70% lower than climatology) in (a) June and (b) 
July 2019, compared to the long-term average from 1979–2018. (c) Burned fraction anomalies (%) in July 2019, compared to the 
long-term average from 2000–18. Slashes indicate areas where the temperature in (a) and (b) or the burned fraction anomaly 
in (c) exceeded the highest value from the past. Stitches indicate areas where anomalies exceeded the 95th percentile in (a) 
and (b) and 90th percentile in (c) from the past. Analyzed datasets include National Oceanic and Atmospheric Administration 
(NOAA) Climate Prediction Center (CPC) Global Unified Gauge-Based Analysis of Daily temperature and precipitation (Chen 
et al. 2008) and MODIS burned area fraction.
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these interactions in order to assess the influence of anthropogenic activities on ex-
treme fires in Alaska. By combining ESM4.1 simulations with satellite data, we are able 
to evaluate the contribution of natural and anthropogenic ignition activities, anthro-
pogenic climate variability and change, and human influence on the land ecosystem 
on the occurrence of extreme fire season in Alaska.

Data and method.
To assess the influence of anthropogenic activity on the risk of extreme Alaska fire, 
we analyze simulations from the GFDL ESM4.1 (Dunne et al. 2020) for phase 6 of the 
Coupled Model Intercomparison Project (CMIP6) (Eyring et al. 2016). ESM4.1 provides 
coupled carbon–chemistry–climate simulations and contributes to multiple endorsed 
intercomparisons in CMIP6 (Eyring et al. 2016). ESM4.1 features vastly improved rep-
resentation of climate mean and variability patterns from GFDL’s previous chemistry 
and carbon coupled models (Dunne et al. 2020). The terrestrial component of ESM4.1, 
LM4.1 (Shevliakova et al. 2020, manuscript submitted to J. Adv. Model. Earth Syst.), 
includes a new fire model with separate data-based parameterizations for croplands 
and pastures (Rabin et al. 2018) and process-based parameterizations for primary and 
secondary lands (i.e., Fire Including Natural and Agricultural Lands model version 2, 
FINAL v2) (Ward et al. 2018; Rabin et al. 2018, 2015). This dynamical fire model enables 
representation of multi-day and crown wildfires and accounts for effects of both chang-
es in land surface meteorological conditions and state of vegetation (Shevliakova et al. 
2020, manuscript submitted to J. Adv. Model. Earth Syst.), thereby facilitating compre-
hensive projection of joint states of climate, vegetation, and fire.

The fraction of attributable risk (FAR) methodology (Stott et al. 2016) is used to ex-
amine how anthropogenic warming and ignition have changed the occurrence of an 
extreme fire season in Alaska, in terms of burned area and fire carbon emission. Here 
we analyze the risk ratio (RR) metric to quantify the factor by which the risk of an ex-
treme event has been changed by external forcing (Fischer and Knutti 2015). To obtain 
such risks in the actual and natural world, lognormal cumulative distribution func-
tions (CDFs) of Alaska’s burned area and fire carbon emission in July are estimated 
from the time series of preindustrial and historical simulations by ESM4.1, as well as 
observational datasets. The Kolmogorov–Smirnov test is applied for determining the 
statistical significance of the difference between these CDFs (Marsaglia et al. 2003). 
RR is subsequently defined as Phistorical/Ppreindustrial, where Phistorical is the probability of ex-
ceeding the extremeness of the observed July 2019 event in the observational CDF, and 
Ppreindustrial is the probability of exceeding such extremeness in the preindustrial CDF. 
To account for potential model biases, the threshold value to be attributed is obtained 
by projecting the observed percentile of the July 2019 value in the observational dis-
tribution onto the historical distribution during 2003–19. Here the extended historical 
ESM4.1 time series for 1850–2019 is obtained by combining years 1850–2014 from the 
historical simulation (Krasting et al. 2018a) and years 2015–19 from the future projec-
tion simulation under the Shared Socioeconomic Pathway (SSP) 5–8.5 (O’Neill et al. 
2016; John et al. 2018). Analyzed observational datasets for 2003–19 include burned 
area from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard both 
the Terra and Aqua satellites (Melchiorre and Boschetti 2018) and fire carbon emission 
from the European Center for Medium-Range Weather Forecasts (ECMWF) Copernicus 
Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS) (Kai-
ser et al. 2012). Corresponding to the observational data length, various 17-yr time win-
dows from the 500-yr preindustrial control run time series (Krasting et al. 2018b) are 
utilized for the estimation of CDF and RR, thereby facilitating uncertainty quantifica-
tion. In addition to the historical and preindustrial simulations, the simulation forced 
by 1% yr–1 CO2 concentration increase (1pctCO2) (Eyring et al. 2016; Krasting et al. 2018c) 
is analyzed for disentangling the specific anthropogenic influences on the occurrence 
of extreme fire season in Alaska.
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Results.
The comparison of simulated burned area and carbon emission from fires across Alas-
ka with satellite data indicates satisfactory results with ESM4.1 (see Fig. ES1 in the 
supplemental material). Indeed, the historical simulation and observations of burned 
area and fire carbon emission consistently identify fire hotspots in the boreal forest 
region dominated by evergreen conifer trees in interior Alaska. Although the simu-
lated historical burned fraction and fire carbon emission are generally smaller than 
observed, the model performance warrants credible attribution of the historical occur-
rence of an extreme fire season in Alaska.

According to ESM4.1, Alaska’s July burned area and fire carbon emission increased 
since 1950s in ESM4.1, resulting in higher occurrence of a 2019-like event during recent 
decades, attributable to anthropogenic activity (Fig. 2). The probability of exceeding 
the burned area equivalent to the 2019 extreme fire season in Alaska increased from 
2% before the 1950s to 7% after the 1950s (Fig. 2a). Furthermore, 63 out of the 100 con-
secutive 17-yr windows during 1850–1949 showed significant difference with 2003–19 
in terms of probability distribution, whereas none of the 17-yr windows after 1950 
showed significant difference with 2003–19 (Fig. 2a). The historical increase in the oc-
currence of an extremely fire-active July in Alaska is attributable to anthropogenic 

Fig. 2. Observational, historical, and preindustrial distribution of Alaska’s July fire activity. (a),(c) Time series of Alaska’ July 
burned area (km2 month–1) and fire carbon emission (Tg C month–1), respectively, from ESM4.1 (black) and observation (red), 
referring to the left y axis. The gray circles represent the percentile of a 2019-like event in the consecutive 17-yr window, 
referring to the right y axis. The filled circles indicate 17-yr periods with significantly (p < 0.05) different distribution than 
2003–19 in the ESM4.1 simulation. (b),(d) Cumulative distribution function (CDF; %) of burned area and fire carbon emission, 
respectively, in Alaska in July from observations (red) and ESM4.1 historical simulation (black) during 2003–19, as well as 
500 years of ESM4.1 preindustrial simulation (blue). Dots indicate burned area and fire carbon emission in each sampled year 
from observation and each simulation. The boxplots show the 5th, 25th, 50th, 75th, and 95th percentiles of the percentile of a 
2019-like event in all consecutive 17-yr windows from the preindustrial time series (sample size = 484). The uncertainty range 
of the preindustrial CDF is (the dashed blue curves) bounded by the CDFs derived from the 17-yr windows that produce the 
5th and 95th percentiles of the percentile of a 2019-like event.
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activity. In terms of burned area, 96% of the 484 preindustrial 17-yr windows show 
significantly different (p < 0.05) distribution than the historical 2003–19 according 
to the Kolmogorov–Smirnov test. The burned area associated with a 2019-like event, 
namely the 91st percentile in the historical times series, is equivalent to the 97th per-
centile in the preindustrial time series, with a 90% confidence interval of the 92nd 
to 100th percentile (Fig. 2b). These CDFs result in a RR, Phistorical/Ppreindustrial, of 3, with a 
90% confidence interval of 1.12 to infinite. The large uncertainty in the estimated RR 
is mainly due to the small sample size associated with the short observational record. 
The historical evolution and attribution of fire carbon emission were largely consistent 
with those of burned area across Alaska in July (Figs. 2c,d).

The historical expansion in Alaska’s burned area in July was primarily caused by an 
increase in anthropogenic ignition, and secondarily through climate-induced biomass 
abundance (Fig. 3). The historical trend in burned area, approximately proportional to 
the product of number of fires per area (Nfire) and burned area per fire (BAperfire), was 
mainly due to the former, Nfire, which exhibits a significant, positive trend (p < 0.001) 
according to the Mann–Kendall trend test (Fig. 3a), whereas BAperfire shows a moderate, 
marginally insignificant (p = 0.06) trend (Fig. 3b). In FINAL v2 [Rabin et al. 2018, Eq. (4) 
therein], the evolution of Nfire can be further decomposed as the product of an ignition 
term, a direct climate factor, a climate-induced aboveground biomass factor, and an an-
thropogenic suppression on ignition efficiency factor (1 − SuppressionPD). The ignition 
term includes both natural and anthropogenic components. Anthropogenic ignition in-
cludes intentional or unintentional activities, such as land and ecosystem management, 
smoking, railroad sparks, and power lines (Fusco et al. 2016), and is represented as a 
function of population density in FINAL v2 (Rabin et al. 2018). Between 48% and 86% of 
the observed fires in Alaska were caused by anthropogenic ignition in the recent decade 

Fig. 3. Time series of Alaska’s fire number, size, and contributing factors in July during 1850–2019, from the ESM4.1 historical 
simulation. The analyzed variables include (a) the number of fires per area (10–8 km–2), (b) the burned area per fire (km2), (c) to-
tal ignitions (10–6 km–2), (d) the function of population density, expressed as unity subtracted by human-induced suppression 
on fire number, (e) the function of aboveground biomass (unitless), and (f) the product of the function of relative humidity, 
canopy air temperature, and soil moisture. In ESM4.1, number of fires per area is calculated by multiplying the factors shown 
in (c)–(f). The thick lines represent the 17-yr running average.
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(Alaska Interagency Coordination Center 2020). Given the input of an invariant seasonal 
cycle of lightning to FINAL, the temporal variation in ignition is controlled by anthropo-
genic ignition. The historical Nfire increased from 1.2 × 10−8 km–2 during 1850–66 to 2.4 × 
10−8 km–2 during 2003–19. Based on the decomposition, this twofold increase in Nfire was 
primarily driven by the trend in anthropogenic ignition, as the total ignition intensity 
increased from 1.6 × 10−6 km–2 during 1850–66 to 2.9 × 10−6 km–2, out of which 62% were 
caused by anthropogenic ignition, during 2003–19. Although increased population den-
sity also resulted in elevated human suppression on ignition efficiency (Fig. 3d), this 1 
− SuppressionPD term decreased only slightly from 0.986 during 1850–66 to 0.948 during 
2003–19, because of the moderate population density in Alaska. A secondary contribu-
tion came from the climate-induced abundance in aboveground biomass, whose con-
tributing factor increased from 0.19 during 1850–66 to 0.22 during 2003–19. Direct in-
fluence of anthropogenic climate change on weather patterns appeared to play a minor 
role in the historical increase of Nfire in Alaska in July. As a further evidence of the key 
influence of climate-induced biofuel abundance on the historically increased number 
of fires in Alaska, the 1pctCO2 experiment, which does not involve changes in anthropo-
genic ignition or anthropogenic suppression on ignition efficiency, shows comparable 
relative increase in fire carbon emission and the contribution from climate-induced bio-
fuel abundance during the simulated 150 years (Fig. ES2).

Conclusions and discussion.
July 2019 saw record-breaking wildfires that burned over 3,600 km2 and emitted an es-
timate of 3.5 Tg of carbon in Alaska, accompanied by extremely hot and dry conditions 
in June and July. According to GFDL ESM4.1, in July burned area and fire carbon emis-
sion increased since 1950s in Alaska, resulting in higher occurrence of a 2019-like event 
during recent decades. The historical increase in the occurrence of an extremely fire-ac-
tive July was attributed to anthropogenic activity, which caused a threefold increase in 
the risk of a 2019-like fire season. The anthropogenic influence on the increased occur-
rence of an extreme fire season in Alaska was primarily through an increase in anthro-
pogenic ignition, and secondarily through climate-induced biomass abundance.

A limitation of our analysis is the use of a single Earth system model, thereby intro-
ducing uncertainty in the detection and attribution of an extreme fire season in Alas-
ka. For example, the historical ESM4.1 simulation features a general underestimation 
of both burned area and fire carbon emission across Alaska (Fig. ES1), unrealistic rep-
resentation of observed year-to-year variations in regional burned area (Fig. 2a), and a 
narrower distribution of the historical, regional fire carbon emission (Figs. 2c,d). This 
model bias is potentially caused by underrepresentation of the trends and interannual 
variability in fire ignition due to lightning (Rabin et al. 2018). Although this apparent 
model bias is partially accounted for in the analysis, its quantitative influence on the 
RR remains unclear. Another possible bias is the inconsistent modeling of radiative 
impact of aerosols from fires. The model is based on CMIP6 emission inventory rath-
er than using the injected aerosols from the simulated fires to calculate the radiative 
forcing. Other factors that are not included in the model may further complicate the 
human–ecosystem–fire interactions. For example, ESM4.1 does not include changing 
tree mortality from beetles that might also drive changes in fire spread (Hicke et al. 
2012). To quantify the uncertainties introduced by analyzing a single model ESM4.1, 
future studies are encouraged to expand the current analysis to multiple Earth system 
models that represent fire dynamics.
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Hindcast attribution simulations suggest that 
anthropogenic climate change increased the 
likelihood of Hurricane Dorian’s extreme 3-hourly 
rainfall amounts and total accumulated rainfall by 
8%–18% and 5%–10%, respectively.

Hurricane Dorian formed on 24 August 2019 from a 
tropical wave and developed into a Category 5 hur-
ricane on 1 September 2019 before making landfall 

in the Bahamas (Avila et al. 2020). The impacts on the 
Bahamas were extreme, including rainfall totals over 0.5 m 
in the region (Avila et al. 2020). This was on the heels of 
the recent damaging North Atlantic hurricanes of 2017 and 
2018, which impacted various regions with different com-
binations of hazards (Klotzbach et al. 2018a; Avila 2019).

Tropical cyclones are very costly natural disasters 
(Klotzbach et al. 2018b) due to a diverse set of impacts, 
including high winds, extreme rainfall, storm surge, and 
fresh and/or saltwater flooding. Previous work has ex-
plored the potential impact of climate change, both in 
the past and projected into the future, on these hazards 
(e.g., Knutson et al. 2010, 2019, 2020; Christensen et al. 
2013; Walsh et al. 2016). A recent review by Knutson et al. 
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(2020) estimates that the global mean near-storm rainfall increases at about 7% per 1°C. 
Significant advances have been made in attribution frameworks to help quantify the ef-
fect of climate change on individual hurricanes. Investigations of individual storms us-
ing various attribution methodologies suggest that changes in rainfall can exceed the 
Knutson et al. (2020) estimate, although there are uncertainties associated with the use 
of different rainfall metrics (e.g., Risser and Wehner 2017; van Oldenborgh et al. 2017; 
Emanuel 2017; Wang et al. 2018; Keellings and Hernández Ayala 2019). Here we apply a 
hindcast attribution methodology to Hurricane Dorian previously developed and test-
ed for Hurricane Florence (Reed et al. 2020), Typhoon Haiyan (Wehner et al. 2019), and 
numerous other tropical cyclones (Patricola and Wehner 2018) that focuses on storm 
rainfall due to confidence in the model’s ability to simulate precipitation processes.

Methods.
This work makes use of the variable-resolution configuration of the Community At-
mosphere Model version 5 (CAM5; Neale et al. 2012) with a 28-km nest over the North 
Atlantic [as in Reed et al. (2020)]. CAM5, at grid spacings of 28 km, has been used 
previously to explore tropical cyclones and rainfall at both climate (e.g., Wehner et 
al. 2014; Zarzycki and Jablonowski 2014; Wehner et al. 2015; Bacmeister et al. 2018; 
Stansfield et al. 2020a) and weather time scales (e.g., Zarzycki and Jablonowski 2015; 
Wehner et al. 2019; Reed et al. 2020). Following the methodology of Zarzycki and Jablo-
nowski (2015), short 7-day ensemble hindcasts are initialized both in advance of and 
after Hurricane Dorian’s landfall in the Bahamas at 12-h increments starting at 1200 
UTC 30 August and ending at 0000 UTC 4 September for a total of 10 initialization 
times. The CAM5 hindcasts are initialized with atmospheric and ocean surface anal-
yses from NOAA’s GDAS and OISST, respectively, to construct an ensemble under the 
“actual” climate and weather conditions. Twenty ensemble members are created at 
each initialization time by perturbing a set of three parameters (convective time scale, 
precipitation coefficient, and parcel fractional mass entrainment rate) in the Zhang 
and McFarlane (1995) deep convection parameterization [following Reed et al. (2020), 
who used the parameter ranges from He and Posselt (2015)], resulting in a 200-member 
ensemble. Note that since modifying parameters in the convective parameterization 
can modulate precipitation (e.g., Zhao et al. 2012) the ensembles are perturbed with 
the same values on a member-to-member basis across all experiments.

A “counterfactual” ensemble (20 members at each initialization time) is construct-
ed by removing the anthropogenic signal from the 3D air temperature, 3D specific hu-
midity, and 2D sea surface temperature (SST) initial conditions used for the actual 
ensemble. Following Reed et al. (2020), the anthropogenic signal is approximated by 
computing the difference between the All-Hist (with prescribed SST, sea ice, green-
house gases, and aerosols derived from observations) and Nat-Hist (with prescribed 
SST, surface ice, greenhouse gases, and aerosols boundary conditions modified to 
remove anthropogenic forcings) CAM5 simulations completed under Climate of the 
Twentieth Century (C20C+) Detection and Attribution Project protocols (available at 
portal.nersc.gov/c20c), designed for event attribution (Stone et al. 2019), for the average 
of August and September for the last 20 years (1996–2016). This results in a difference 
of SST of about 0.75°C in the Bahamas region. Dynamical fields, such as zonal and 
meridional wind, are not adjusted in the initial conditions counterfactual ensemble, 
consistent with Reed et al. (2020).

For both the actual and counterfactual ensembles, the TempestExtremes software 
package (Ullrich and Zarzycki 2017) is used to detect and track the simulated storms 
and extract storm-related rainfall using the approach of Stansfield et al. (2020b), which 
specifies storm rainfall to be within an outer radius defined by a 8 m s–1 threshold of 
the azimuthally averaged azimuthal wind speed. Hurricane Dorian’s observed rainfall 
estimates from NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG; https://
pmm.nasa.gov/data-access/downloads/gpm) are used to calculate the maximum 3-hourly 
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rainfall amount, while recognizing that there are substantial uncertainties associated 
with heavy tropical cyclone rainfall in satellite estimates (e.g., underestimating storm 
rainfall over land; Chen et al. 2013).

Given resolution limitations, this work focuses on characterizing changes in the 
precipitation associated with Hurricane Dorian in the CAM5 hindcasts simulations. It 
is well known that intensity can influence storm rainfall and that numerical simula-
tions at these grid spacings are limited in their ability to represent intensity (i.e., max-
imum surface wind; Davis et al. 2018). Furthermore, the work of Patricola and Wehner 
(2018) demonstrated, using a comparable hindcast attribution framework with the 
Weather Research and Forecasting (WRF) Model, that while the simulated intensity 
(i.e., maximum wind speed) of hurricanes is underestimated at 27-km grid spacing 
compared to 3-km grid spacing, changes in storm rainfall due to warming are relative-
ly insensitive to this resolution difference. The CAM5 actual ensemble simulates an 
average intensity bias at a lead time of 72 h (120 h) of approximately 47 hPa (39 hPa), 
which is comparable to the intensity errors for the 27-km grid spacing simulation of 
other category 5 hurricanes in Patricola and Wehner (2018) and consistent with other 
operational numerical weather prediction for an intensifying major hurricane. While 
imperfect, CAM5 hindcasts of tropical cyclones have demonstrated skill in represent-
ing storm rainfall (Reed et al. 2020) and tracks comparable to forecasts from operation-
al numerical weather prediction (Zarzycki and Jablonowski 2015).

Results.
Comparing 3-hourly rainfall amounts and total accumulated rainfall across the ac-
tual and counterfactual ensembles allows for an analysis of the potential impact of 
observed climate change on Hurricane Dorian. The ensemble mean accumulated pre-
cipitation throughout the lifetime of the simulated storms at all initialization times is 
shown in Fig. 1. The spatial ensemble mean rainfall patterns suggest that there are 
similarities in the simulated tracks for the actual and counterfactual ensembles for 
a given initialization time, allowing for direct comparison. However, there are varia-
tions in the simulated tracks across different initialization times (Fig. ES1), consistent 
with real-time operational forecasts. Furthermore, additional analysis shows that the 
average CAM5 hindcast track error at a lead time of 72 h (120 h) is 144 km (230 km), 
which is within range of track errors associated with the official operational models 
used by the National Hurricane Center. When comparing the magnitude of the ensem-
ble mean accumulated rainfall at individual initialization times between the actual 
and counterfactual ensembles, Fig. 1 indicates that many areas experience increased 
precipitation in the actual ensemble compared to the counterfactual. This is also true 
in the region near the Bahamas (defined to be 25.5°–29.5°N, 76°–80°W; outlined in Fig. 
1) where the most extreme rainfall accumulations were observed to occur (Fig. ES2), 
providing some evidence that the model represents extreme rainfall sufficiently well 
in the region. The Bahamas region is simulated to experience the highest rainfall ac-
cumulations in the ensembles during the initializations between 0000 UTC 31 August 
and 1200 UTC 2 September.

Figure 2a shows the probability distribution of the 3-hourly rainfall amounts asso-
ciated with the simulated storm over its lifetime for all ensembles. The results suggest 
that there is a shift toward higher 3-hourly rainfall amounts in the actual ensemble 
with climate change. The likelihood of 3-hourly precipitation above the IMERG esti-
mated maximum of 0.136 m increases from approximately 0.145% in the counterfactu-
al ensemble to about 0.168% in the actual ensemble, representing an increase of 16% 
(95% confidence interval: 14%–18%) in the likelihood of such events. It is worth noting 
that a Dorian-like storm with rainfall at or above the IMERG estimated 3-hourly max-
imum is a 99.8th percentile event across the 200-member CAM5 ensemble, which is 
indeed a rare event at the tail of the simulated distribution, suggesting that the model 
framework has some skill in reproducing the extreme rainfall rates observed for Hurri-
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Fig. 1. Total accumulated ensemble mean storm-related rainfall (m) over the entire forecast period (excluding the first 12 h) 
for each initialization time (as labeled) of the counterfactual and actual realizations of Hurricane Dorian. Each initialization 
time contains 20 ensemble members. The Bahamas region is denoted (black outline) for the initialization times used for the 
region-specific analysis.
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cane Dorian. Given that the IMERG maximum is an estimate, we performed a sensitivi-
ty analysis by repeating the calculation for a maximum 3-hourly rainfall amount of 0.1 
and 0.17 m (representing a ±25% change from the estimated maximum), and the per-
centage increase ranges from 8% to 13% in the likelihood of such events. Analysis of 
the maximum 3-hourly rainfall amounts (Fig. 2c) in each ensemble reveals an increase 
in the maximum precipitation of 2% (95% confidence interval: −1% to 4%). Figure 2b 
shows the same probability distribution but for the Bahamas region (outlined in Fig. 
1) associated with the initialization times that produce large rainfall amounts in the 
region. The results again suggest that there is a shift toward higher 3-hourly rainfall 
amounts in the actual ensemble with climate change, particularly at the highest rain 
rates. The maximum 3-hourly rainfall in the Bahamas region (Fig. 2d) is simulated to 
have increased by 2% (95% confidence interval: 1%–3%) due to climate change, while 
the likelihood of 0.136 m amounts increases marginally (<1%).

A more integrated measure of rainfall associated with Hurricane Dorian is the sum 
of all accumulated precipitation during the simulated storms, in which CAM5 demon-
strates some skill in reproducing the accumulated amounts and spatial distribution 
(Fig. 1) when compared to IMERG estimates (Fig. ES2). For the full ensemble there is a 
clear increase in the total accumulated precipitation of 7% (95% confidence interval: 
5% to 10%) and in the subset ensemble in the Bahamas region of 3% (95% confidence 
interval: −1% to 7%). Note that for all analysis in this section the 95% confidence inter-
val is derived from a bootstrap analysis of 1000 samples.

Fig. 2. Probability distributions of the (a),(b) 3-hourly rainfall amounts and (c),(d) maximum 3-hourly rainfall 
amounts associated with Hurricane Dorian in the actual and counterfactual ensembles. Results are shown for (left) 
rainfall at all initialization times throughout the domain and (right) the six subset initialization times and Baha-
mas region only (see Fig. 1). The vertical line in (a),(b) represents observed maximum 3-hourly rainfall amount as 
estimated by IMERG.
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Conclusions.
The work explores the potential impact of climate change on the rainfall associated 
with Hurricane Dorian using the CAM5 hindcast attribution framework. The analysis 
indicates the likelihood of 3-hourly rainfall accumulations above 0.136 m (observed) 
increases by 16%, while the maximum 3-hourly rainfall amount increases by 2% due 
to climate change. When focusing on the extreme accumulations of rainfall that oc-
curred over multiple days, the analysis reveals the total accumulated rainfall over the 
area of the simulated storm increased by 7%. This work provides additional evidence 
that climate change has increased the magnitude and probability of extreme rainfall 
associated with recent devastating hurricanes (Risser and Wehner 2017; van Olden-
borgh et al. 2017; Emanuel 2017; Wang et al. 2018; Trenberth et al. 2018; Keellings and 
Hernández Ayala 2019; Reed et al. 2020) and is consistent with projected changes in 
tropical cyclone–related precipitation under future climate change scenarios (e.g., Vil-
larini et al. 2014; Knutson et al. 2020; Stansfield et al. 2020a). Depending on the rain-
fall metric used the simulated change presented here for Hurricane Dorian is closer to, 
or below, the theoretical Clausius–Clapeyron scaling of ~4% to 6% (given the 0.75°C 
SST change). However, differences in metrics and methodologies, including sensitiv-
ities to model resolution which will be the focus of future work, among the various 
hurricane precipitation attribution studies are critical to the interpretation of these 
numbers. As global SSTs continue to warm, rainfall accumulations associated with 
storms like Hurricane Dorian will undoubtedly continue to increase.
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The eastern U.S. 2019 November cold outbreak was 
mainly caused by extreme northerly winds. CMIP6 
results find nonsignificant dynamical effects of an-
thropogenic climate change on such regional winds; 
thermodynamic effects alone decreased the proba-
bility of this cold event by 70%.

I n November 2019, although most of the world was 
anomalously warm (as the second warmest globally in 
November since 1900), 42 stations in the northeastern 

United States broke the historical record-low tempera-
ture since 1900 (stars in Fig. 1a). November average dai-
ly minimum temperatures (Tmin) at 536 stations in the 
eastern United States were below their 10th percentiles, 
in contrast to above-normal Tmin in the western United 
States (filled circles in Fig. 1a). This severe cold outbreak 
had a significant impact on society; for example, it in-
creased residential energy consumption in the eastern 
United States by 84% in November 2019 relative to the 
2000–18 November mean (https://www.ncdc.noaa.gov/
societal-impacts/redti/).
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Fig. 1. (a) Spatial pattern of the average daily minimum air temperature (Tmin) anomalies 
(relative to 1900–2019 mean) in November 2019 over the contiguous United States. Stations 
marked respectively as stars and filled circles underwent the record-breaking and extremely 
low Tmin anomalies in November 2019 since 1900. Study region is shown as the black rectangle 
(for land areas only). (b) The 300-hPa geopotential height anomalies (Z300; red/blue contours 
with a 30-m interval) and meridional wind anomalies (V300; color shading; m s–1) in Novem-
ber 2019. The 300-hPa wind anomalies regressed onto the November 2019 Tmin anomalies are 
shown as arrows for areas where regressions of the V300 anomalies are significant at the 5% 
level. The average jet stream position with maximum wind speed is shown as a green contour. 
The region for the average V300 anomalies is shown as the black frame. (c) Time series of re-
gional average Tmin and V300 anomalies. Trends are shown at the middle. The 10th percentile 
line is shown as light blue horizontal line. (d) Joint return periods (contours) of the observed 
Tmin and V300 anomalies (blue dots). The 2019 values are shown as a red star. Note that the 
weak winds during the five cold events are related to the uncertainty of reanalysis V300 during 
the early period, i.e., 1900–30. (e) Generalized Pareto distribution (GPD) fit (red; dashed line 
for 5%–95% confidence intervals) of the observed November Tmin anomalies (black pluses).
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For the past regional cold air outbreaks, a persistent and meandering anomalous 
polar jet stream was found to propagate the Arctic cold air into many parts of the east-
ern United States through anomalous northerlies (Francis et al. 2017; Cohen et al. 2018; 
Xie et al. 2019). Global warming raises the background mean temperature, which in-
creases the frequency of the warm events but decreases the chance of cold events, espe-
cially in regions north of 50°N where surface warming has been the largest (Alexander 
et al. 2006; Hartmann et al. 2013; Christiansen et al. 2018). However, the frequency of 
winter extreme cold events in the eastern United States and some Eurasian regions has 
increased in recent decades, especially in mid- to late winter (Scherer and Diffenbaugh 
2014; Cohen et al. 2018). These increases in cold extremes have been mainly attributed 
to changes in the frequency of certain weather patterns that displace cold airmass-
es southward to different sectors of the northern midlatitudes (Zhou ang Wang 2016; 
Singh et al. 2016; Deng et al. 2020; Luo et al. 2020). However, whether recent global 
warming has contributed to the weather pattern change remains unknown.

While the thermodynamic effect of global warming alone is expected to increase 
warm event frequencies, it cannot directly explain the increased cold events. Based 
on our prior work of regional heat wave attribution (Zhou et al. 2020), in addition to 
estimating the role of anomalous northerlies, we also attempted to quantify the roles 
of human influences in the probability of the eastern U.S. 2019 cold outbreak from both 
dynamic and thermodynamic perspectives. Our results should provide a physical way 
to reconcile the interpretations of human influences on warm and cold events.

In summary, this study tries to answer three questions: 1) What does the eastern 
U.S. 2019 November cold air outbreak look like in the historical context? 2) How much 
do the anomalous northerlies contribute to the probability of severe cold outbreaks 
like this one? 3) What are relative roles of human-induced dynamic and thermody-
namic changes in shaping severe cold events like November 2019 over the eastern 
United States?

Data and methods.
To show the 2019 cold event in historical context and its spatial pattern, we used the 
November Tmin monthly data at ~1,600 stations with more than 30 years of data from 
1900 to 2019 in the study region (land areas within 65°–95°W, 30°–50°N; Fig. 1a) from 
the latest Berkeley homogenized observation dataset (available at http://berkeleyearth 
.org/) (Muller et al. 2013). This temperature dataset was homogenized by comparing 
with nearest neighbor stations (Muller et al. 2013) and employed in studying regional 
extremes (Zhou and Wang 2016).

To depict the atmospheric circulation pattern behind the event, we used the 1° × 1° 
300 hPa geopotential height (Z300), zonal wind (U300), and meridional wind (V300) 
data from NOAA-20CRv3 (the Twentieth Century Reanalysis version 3 produced by 
the National Oceanic and Atmospheric Administration) from 1900 to 2015 (available 
at https://www.esrl.noaa.gov/psd/data) (Slivinski et al. 2019). These data were extended 
to 2019 using JRA-55 (the 55-Year Japanese Re-Analysis) reanalysis data (available at 
http://jra.kishou.go.jp/) (Kobayashi et al. 2015) by correcting their 1958–2015 mean differ-
ences. Jet stream position is shown here as the November average latitude (northward 
of 30°N) where the 6-hourly wind speed at 300 hPa reaches its maximum (Fig. 1b).

Monthly outputs from the models participated in CMIP6 (phase 6 of the Coupled 
Model Intercomparison Project Phase 6; https://esgf-node.llnl.gov/search/cmip6/) (Eyring 
et al. 2016) were used to quantify human influences on the probability of the eastern 
U.S. 2019 cold air outbreak. Twenty out of 29 CMIP6 historical all-forcings (ALL; see 
Table ES1 in the supplemental material) runs were selected in this study because of 
(i) comparable histograms (p > 0.05 via a Kolmogorov–Smirnov test) of the November 
Tmin (V300) anomalies between CMIP6 ALL runs and observations (reanalyses), and 
(ii) significant (p < 0.05) positive temporal correlations between the detrended Tmin 
and V300 anomalies from CMIP6 ALL runs and observations. The Tmin and V300 
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anomaly series and their trends during 1900–2019 are shown in Fig. ES1. To better 
represent the current climate for the 2019 event and consider sample size, we used a 
centered 40-yr window (2000–39) to represent climate conditions circa 2019 consist-
ing of the selected ALL runs and the extended Shared Socioeconomic Pathway 2_45 
(SSP2_45) runs. The resampled data from natural-forcings-only (NAT) runs (Table ES1) 
were adopted for comparison.

To be consistent, all the data were converted into anomalies relative to the 1900–
2019 mean. Observations were first averaged onto 1° × 1° grids and model data were 
interpolated into the 1° × 1° observation grids using bilinear interpolation; they were 
then averaged (with area as weight) over the study region. To estimate the occurrence 
probability of the event, we constructed the probability density function (PDF) of the 
November Tmin and V300 anomalies using a Gaussian kernel estimate for the interior 
and a generalized Pareto distribution (GPD) estimate for the upper and lower tails. The 
boundaries of the lower and upper tails are the 30th and 70th percentiles. A Student’s 
t copula (Demarta and McNeil 2005) was used to derive a correlation between their 
fitted probability distributions.

To estimate the regional circulation changes induced by human influences, follow-
ing Zhou et al. (2019), we calculated the probability ratio (PR) of the V300 anomalies at 
or below the 2019 regional mean value (≤−5.64 m s–1 from reanalysis) between the ALL 
and NAT runs. The November Tmin anomalies were decomposed into dynamic and 
thermodynamic parts. The dynamic part was calculated by regressing the regional 
mean November Tmin anomalies onto the V300 anomalies and the local thermody-
namic part is the residual. We used the V300-related Tmin variations to represent the 
circulation-induced or dynamic contribution, even though a circulation change would 
advect airmasses with different thermodynamic properties such as air temperature 
and humidity. To further quantify the human-induced dynamic and thermodynamic 
contributions to the probability of the eastern U.S. 2019 cold outbreak, we respective-
ly calculated the PRs of the dynamic and thermodynamic parts at or below the 2019 
values when anomalous northerlies (≤−5.64 m s–1) occur in ALL and NAT runs. The 
95% confidence intervals (CI) were estimated with a 10,000-member bootstrap (with 
replacement).

Results.
The 2019 November cold air outbreak in historical context. In November 2019, 300-hPa 
meridional wind anomalies exhibited a meandering planetary-scale wave pattern over 
the northern mid- to high latitudes (color shading in Fig. 1b), with anomalous northerlies 
over North America (arrows at a significance level of 0.05 in Fig. 1b). The persistent wav-
ier polar jet stream pushed cold air masses from Canada down across the Great Lakes, 
and then into the central and northeastern United States (green contour in Fig. 1b), 
leading to a cold air outbreak over the eastern United States (Fig. 1a).

The Tmin anomaly averaged over the eastern United States is −1.82°C in November 
2019, close to the 10th percentile during 1900–2019 (Fig. 1c). The PDF fit of the observed 
November Tmin anomalies suggests that the eastern U.S. 2019 cold outbreak is a 
1-in-8-yr event (95% CI: 1 in 6–12 yr) (Fig. 1e). The detrended November Tmin anomalies 
show a significant correlation (r = 0.70, p < 0.001) with the detrended V300 anomalies 
over the region 90°–120°W, 40°–60°N. A Student’s t copula fit suggests the November 
Tmin and V300 anomalies have a 1-in-20-yr concurrent return period (Fig. 1d).

Role of anomalous northerlies. To identify the roles of anomalous northerlies in the 
eastern U.S. 2019 cold outbreak, we estimated the probabilities of the November Tmin 
anomalies at or below the 2019 value (≤−1.82°C) for two cases in CMIP6 ALL runs: 
one with strong northerly winds (i.e., V300 ≤ −5.64 m s–1; red in Fig. 2c) and one with 
neutral or weak winds (i.e., −1 ≤ V300 ≤ 1 m s–1; gray in Fig. 2c). They are 0.273 (95% CI: 
0.12–0.36) and 0.014 (95% CI: 0.01–0.03) (Fig. 2c), respectively. Thus, the chance for such 
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a cold outbreak event to occur over the eastern United States under strong northerlies is 
approximately 18 times (PR; 95% CI: 7–55 times) that under weak winds (Fig. 2e). This 
suggests a crucial role of northerly wind in causing winter cold outbreak over the eastern 
United States, as the northerly wind advects cold air from Canada into the central and 
eastern United States (Fig. 1b). The large uncertainty in this PR is mainly ascribed to 
low event probability and its large uncertainty during weak winds (Fig. 2e).

Human-induced dynamic and thermodynamic contributions. Figures 2a and 2b show a 
significant lower probability in CMIP6 ALL runs than in NAT runs for the November Tmin 
anomalies to be ≤−1.82°C, but a nonsignificantly higher probability for the November 
V300 anomalies to be ≤−5.64 m s–1. Their PRs are 0.23 (95% CI: 0.16–0.31) and 1.25 (95% 
CI: 0.91–1.95), respectively. This suggests that human influences might tend to increase 
the occurrence frequency of the anomalous northerlies and thus the likelihood of the 
cold outbreak events, which could partly offset United States.

We further focused on estimating human influences for the cases with V300 ≤ 
−5.64 m s–1, which represent conditions with strong northerlies like that in November 

Fig. 2. (a) Estimated probability density functions (PDFs) of the November average daily minimum air temperature (Tmin) 
anomalies averaged over the eastern United States during a 40-yr window (2000–39) simulated by 20 CMIP6 models under the 
all-forcing (ALL; red) and natural-forcing-only (NAT; blue) scenarios. The observed value for November 2019 is shown as the 
black vertical line. The PDF plots were smoothed by kernel density function with 200 equallys spaced points. (b) As in (a), but 
for V300 anomalies (dashed line from reanalysis). (c) As in (a), but for two cases in the ALL runs: with strong northerly winds 
(V300 ≤ −5.64 m s–1, the value in November 2019; red) and one with wind winds (−1 ≤ V300 ≤ 1 m s–1; gray). (d) As in (a), but for 
cases with strong northerly winds in the ALL and NAT runs (solid curves; unit: %). These two PDFs are further decomposed 
into a dynamic (dashed curves) and a thermodynamic part (dot lines) (see text for details). (e) Probability ratios (PR) between 
the CMIP6 ALL and NAT runs of the cold outbreaks like November 2019 due to the occurrence of northerlies (gray) and human 
influences (red). The human influences are also estimated for the dynamic and thermodynamic parts.
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2019. For these cases with strong northerlies, we compared the probabilities for the 
November Tmin anomalies to be ≤ −1.82°C in the ALL and NAT runs (solid red and blue 
curves, respectively, in Fig. 2d), and found that their PR is 0.40 (95% CI: 0.17–0.56; 
Fig. 2e). This indicates that human influences might have decreased the probability of 
the eastern U.S. 2019 cold air outbreak by ~60%.

To better understand human influences on the 2019 event in a physical way, we 
further quantified the contributions from the dynamic and thermodynamic perspec-
tives. We first decomposed the November Tmin anomalies into the dynamic and ther-
modynamic parts (as described above). We then calculated the PRs between the ALL 
and NAT runs for the dynamic and thermodynamic parts of the Tmin anomalies at or 
below the 2019 values for cases with anomalous northerlies (i.e., V300 ≤ −5.64 m·s–1) 
(dashed and dotted lines in Fig. 2d) and found the PRs to be 1.08 (95% CI: 0.95–1.24) 
and 0.30 (95% CI: 0.05–0.73) for the dynamic and thermodynamic parts, respectively 
(Fig. 2e). In other words, the human-induced dynamic (i.e., northerly wind) changes 
increase the chance (by ~8%, nonsignificant at a level of 0.05) of severe cold outbreaks 
like November 2019 over the eastern United States, while the human-induced ther-
modynamic changes alone decrease their chance by ~70%. Note that the larger PR 
uncertainty for the thermodynamic part than for the dynamic part may be related to 
the use of the V300-regressed Tmin variations as the dynamic part and the residual as 
the thermodynamic part, since the V300-regressed Tmin variations only represent the 
effect from large-scale circulation (see section “Data and methods”).

Summary.
The eastern United States experienced a cold air outbreak in November 2019 with 
regional-mean Tmin anomaly (−1.82°C) close to the 10th percentile of 1900–2019. 
Our analyses of observations and reanalysis show that extreme northerly winds 
(≤−5.64 m s–1) were a principal factor responsible for this cold outbreak. An analysis of 
CMIP6 model data further suggests that the existence of such anomalous northerlies 
can increase the probability of such cold outbreaks to about 18 times compared with 
cases with weak winds (−1 ≤ V300 ≤ 1 m s–1).

Comparing the probabilities of such cold outbreaks under conditions with strong 
anomalous northerlies (V300 ≤ −5.64 m·s–1) in CMIP6 ALL and NAT runs, we found 
that human influences might have decreased the likelihood of such cold outbreaks 
by ~60% (95% CI: 44%–83%). The analyses of the V300-based regressions and event 
probability ratios further indicate that the human-induced dynamic (i.e., northerly 
wind) changes might have increased the likelihood of such events by 8% (nonsignif-
icant at a level of 0.05), whereas the human-induced thermodynamic changes might 
have decreased the chances of the events by 70%. This event attribution helps us to 
better understand the roles of human influences on the formation and evolution of the 
cold air outbreaks over the eastern United States.
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2019 water-year mean streamflow into Chesapeake 
Bay from the Susquehanna River was the third high-
est since 1891. Anthropogenic climate change has 
increased the probability of extreme Susquehanna 
River mean streamflows.

A veraged over the 2019 water year (1 October 2018 
to 30 September 2019), freshwater discharge into 
the Chesapeake Bay was the largest since mea-

surements began in 1937 (USGS 2019), and streamflow in 
the Susquehanna River, the largest tributary of the Ches-
apeake Bay (Fig. 1a), measured at Harrisburg, Pennsylva-
nia (USGS station 01570500) was the third highest since 
records began in 1891 (Fig. 1b). These extreme anomalies 
in Susquehanna River streamflow can impact upper Ches-
apeake Bay salinity, temperature, turbidity, and biogeo-
chemistry. Consequently, valuable living marine resources 
such as blue crabs (Jensen and Miller 2005), striped bass 
(Millette et al. 2020), and oysters (Kimmel et al. 2014) 
can be impacted, either positively or negatively, by these 
streamflow extremes.

While 2019 was the third highest mean streamflow in 
the Susquehanna, the all-time record was set in 2011, and 
the second highest was observed in 2004. This sudden 
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run of record events is consistent with recent increases in precipitation totals and ex-
tremes in the mid-Atlantic and Northeast regions of the United States (Guilbert et al. 
2015; Hoerling et al. 2016; Howarth et al. 2019; Huang et al. 2017, 2018; Knutson and 
Zeng 2018). In the U.S. Northeast, climate models commonly project increased annual 
and extreme precipitation as a result of anthropogenic climate change (ACC) (Lynch 
et al. 2016; Ning et al. 2015). ACC has already increased the risk of extreme precipita-
tion events and totals in the U.S. Northeast (Winter et al. 2020) and has likely increased 
annual and seasonal-mean precipitation over 1901–2010 (Knutson and Zeng 2018). A 
natural question, then, is whether any change in the frequency of extreme streamflow 
can be attributed to ACC. This attribution is complicated by a concurrent greenhouse 
gas–driven warming that, in isolation, would increase evapotranspiration and reduce 
runoff and streamflow (Knutson et al. 2013; Vose et al. 2017).

In this study, we use a water balance model to attribute the combined effects of 
changing mean temperature and precipitation on water year mean streamflow in the 

Fig. 1. (a) Map of the Susquehanna River, the stream gauge at Harrisburg (star), and the upstream watershed (shaded). (b) Time 
series of observed water year mean streamflow at Harrisburg. Red star denotes 2019, and the dotted line shows the threshold 
for an extreme event used in this study. (c) Comparison of water-year (WY) mean streamflow predicted by the water balance 
model driven by Livneh data vs the observed mean streamflow during the calibration period (1971–2011). (d) Comparison of 
probability distributions from the observations and Livneh-driven water balance simulation during the calibration period.
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Susquehanna River. We use simulations from phase 6 of the Coupled Model Intercom-
parison Project (CMIP6) to compare the probability of an extreme streamflow year like 
2019 with the probability in a counterfactual climate without anthropogenic changes 
in radiative forcing. Using the water balance model also allows a separation of the 
effects of changing precipitation and temperature on extreme streamflow risk.

Data and methods.
Streamflow in the Susquehanna River at Harrisburg, Pennsylvania, was simulated from 
CMIP6 climate model data using a water balance model that predicts monthly mean 
runoff from monthly total precipitation and potential evapotranspiration (Wolock 
and McCabe 1999; McCabe and Markstrom 2007). Our use of the model was similar to 
Muhling et al. (2018), except we used the Hargreaves–Samani method (Hargreaves and 
Samani 1982, 1985) to calculate potential evapotranspiration (EP) from climate mod-
el temperature data rather than the Hamon (1961) method. The Hargreaves–Samani 
method has a sensitivity to warming that is more consistent with non-water-stressed 
evapotranspiration calculated during climate model simulations (Milly and Dunne 
2016, 2017). The water balance model was calibrated for the Susquehanna River basin 
by adjusting the model parameters for evapotranspiration, rain/snow mixing, runoff, 
soil storage, and snowmelt and underestimation using an optimization algorithm to 
minimize the root-mean-square error (RMSE) of monthly mean streamflow when using 
the last 41 years (1971–2011) of the Livneh et al. (2013) gridded temperature and pre-
cipitation observations as input. All water balance simulations predicted total runoff 
at a monthly time step, which is sufficient for capturing extremes in water year mean 
streamflow for a large river basin like the Susquehanna. Total runoff was converted to 
mean streamflow by integrating the time rate of runoff over the watershed area.

We ran an ensemble of water balance model simulations using climate model data 
from CMIP6. We used 52 ensemble members from eight different climate models that 
participated in the Detection and Attribution Model Intercomparison Project (DAMIP) 
(Gillett et al. 2016) and provided the output needed to calculate EP (see Table ES1 in 
the supplemental information). The model temperature and precipitation data were 
averaged over the Susquehanna River basin upstream of Harrisburg and corrected for 
biases using the quantile delta mapping (QDM) method (Cannon et al. 2015) with the 
Livneh et al. (2013) gridded data used to calibrate the water balance model as the ref-
erence for the bias correction. As a result, the water balance model did not need to be 
recalibrated to run with the bias-corrected climate model data.

To calculate the present-day probability of an extreme water-year mean streamflow 
(P1), we 1) set a threshold value of 1,509 m3 s–1, the value observed in 1891 and that 
water years 2004, 2011, and 2019 have exceeded; 2) fit a gamma distribution to the 
pooled water-year mean streamflows simulated by models following the combined 
CMIP6 historical and SSP245 scenario for a 41-yr period centered around 2019 (1999 
to 2039); and 3) calculated the probability of an extreme streamflow year above the 
1,509 m3 s–1 threshold using the fitted distribution. To determine the probability of an 
extreme streamflow in a counterfactual climate (P0), we repeated the same process 
using streamflow simulations from models following the last 41 years (1974 to 2014) of 
historical forcing from the hist-nat scenario, which includes the historical time series 
of natural solar and volcanic forcings but excludes anthropogenic emissions. Exten-
sions of the hist-nat scenario into the future, which would be necessary to center the 
hist-nat simulations around 2019, are not available for most models, but centering is 
less important than for the historical scenario because the natural forcing does not 
contain large anthropogenic trends. We then calculated the risk ratio as P1/P0 and the 
fraction of attributable risk as 1 − (P0/P1) (Stott et al. 2016). A confidence interval for 
the risk ratio was determined using bootstrapping and a significance level of 0.1. The 
significance level and 41-yr time period were chosen to provide sufficient power to test 
our hypothesis. A posteriori tests using shorter or longer time periods showed that 
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confidence intervals in the results would change but the conclusions generally would 
not. The conclusions are also not sensitive to the definition of the threshold for an 
extreme event.

As an additional assessment, we also report results derived using a nonparamet-
ric approach described in Paciorek et al. (2018) with confidence intervals using the 
method of Koopman (1984). This approach has the advantage of not requiring an 
assumption about the probability distribution. However, whereas the gamma distri-
bution method uses all available data to estimate the shape of the distribution and 
the probability of extremes, the nonparametric method relies only on the fraction of 
data points exceeding the extreme threshold and will have high uncertainty (Paciorek 
et al. 2018). As a result, the nonparametric method has significantly less power than 
the gamma fitting method (in other words, the nonparametric method is less likely 
to identify a real change in risk as statistically significant). We thus primarily rely on 
the gamma method, but present the nonparametric results for completeness and as a 
consistency check.

Finally, to separate the effects of changing temperature and precipitation on 
streamflow risk, we re-ran the water balance simulations driven by data from the hist-
nat scenario with climate change factors applied to only the temperature or precipi-
tation data. These change factors were derived by calculating the mean difference or 
ratio between the 1999–2039 historical/SSP245 and 1974–2014 hist-nat scenarios for 
each climate model. For temperature, the difference was added to the hist-nat time 
series, and for precipitation, the hist-nat time series was multiplied by the ratio. For 
temperature, we also considered separately the effects of evapotranspiration and the 
rain/snow ratio by applying the change factor to the data used to calculate EP but not 
to the data used to apportion rain and snow, and conversely.

Results.
The water balance model accurately predicts historical water year mean streamflow 
when driven by observed temperature and precipitation (Fig. 1c). The streamflow sim-
ulation is essentially unbiased, highly correlated with the observations, and has a 
mean error [RMSE or mean absolute error (MAE); Fig. 1c] that is an order of magnitude 
less than the mean streamflow. We also used leave-one-out cross-validation, itera-
tively leaving one water-year of data out at a time and recalibrating and reevaluating 
the model, to test the robustness of the model calibration and predictive capability. 
This approach results in only a minor degradation of model predictive skill for the 
left-out year (RMSE of 77.5 m3 s–1, MAE of 65.8 m3 s–1, same correlation and bias), which 
confirms the robustness of our model. The observed and modeled streamflow can be 
well represented by a gamma distribution (Fig. 1d), supporting our use of the more 
powerful gamma method as our primary attribution test. Because the internal climate 
variability in the CMIP6-driven water balance model simulations is not in phase with 
the observed internal variability, we cannot directly compare these simulations with 
the observed time series. Instead, we use the Kolmogorov–Smirnov two-sample test 
to verify that the pooled streamflow simulations driven by the CMIP6 GCMs under the 
combined historical and SSP245 scenario have a similar probability distribution to the 
observed water-year mean streamflow. This test confirms that the distribution of sim-
ulated streamflow is similar to the observed distribution during the full observational 
period of 1891–2019 (D = 0.0893, p = 0.265).

From the water balance model simulations driven by CMIP6 models, the gamma 
distribution method estimates that there was a 2.52% chance of exceeding the thresh-
old of 1,509 m3 s–1 in a year with climate forcing similar to 2019 (Table 1). In the coun-
terfactual scenario without anthropogenic emissions, this probability was lower at 
1.63%, resulting in a risk ratio of 1.55 (90% confidence interval 1.23–1.92). The 90% 
confidence interval on the risk ratio excludes 1, so we conclude that anthropogenic 
climate change significantly increased the risk of experiencing an extreme water-year 
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mean streamflow in 2019. The best estimate of the fraction of attributable risk is 0.355, 
indicating that about 1/3 of the present risk of streamflow extremes is attributable to 
anthropogenic climate change.

The nonparametric method, which has weaker power than the gamma distribution 
method, produces qualitatively similar but less confident results (Table 1). The non-
parametric method gives a slightly lower historical probability of an extreme stream-
flow compared to the gamma method (1.97%) and a similar counterfactual probability 
(1.64%). The resulting risk ratio (1.20) and FAR (0.167) are lower, but the confidence 
intervals on the risk ratio are much wider and include 1. The consistency of streamflow 
data with the gamma distribution (Fig. 1d) supports our reliance on the more power-
ful gamma method as the primary quantitative test, with the qualitative consistency 
between the gamma and less powerful nonparametric approach providing no reason 
to reject this result.

In Fig. 2, we compare the separate effects of modeled temperature, evapotranspi-
ration, and precipitation changes on simulated streamflow. In the CMIP6 models, the 
most robust signal of anthropogenic climate change in this region is a rapid warm-
ing beginning in the 1980s and projected to continue into the future (Fig. 2a). In the 
absence of any precipitation changes, this warming would have reduced the risk of 
an extreme streamflow event (orange bar in Fig. 2b) by increasing evapotranspiration 
(blue). In the water balance model, temperature is also used to determine the rain/
snow mixing ratio, and warming shifts the winter ratio toward rain, but this is mod-
eled to have had a negligible effect on water year mean streamflow extremes (purple). 
Modeled precipitation begins to increase around the same time as temperature and 
emerges above the range of natural variability around the end of the historical exper-
iment (2014). When considering the 41-yr window centered on 2019, the overall projec-
tion is for mean precipitation above the 1974–2014 natural baseline, which alone would 
cause a significant increase in the risk for extreme streamflow (green bar in Fig. 2b). 
Finally, the gamma and nonparametric methods yield similar results for each experi-
ment, although the nonparametric results have much wider confidence intervals.

Conclusions.
Three extreme annual mean streamflow events have occurred in the last two decades 
in the Susquehanna River, and we found that ACC has increased the probability of 
these extreme events. In the model simulations, the increased risk from higher precip-
itation has exceeded the reduced risk from increased evapotranspiration. This attribu-
tion may be useful for guiding management decisions; for example, the Susquehanna 
River typically accounts for around half of the freshwater discharge into Chesapeake 
Bay, so an increased risk of extreme streamflow in the river may increase the risk 
of poor water quality and shifts in fish habitat in the bay. Similarly, the Chesapeake 
Bay Program supports efforts to improve stream health and function throughout the 
Susquehanna River watershed. Given the likelihood for increases in extreme mean 
streamflow events, it is important to consider their impact on the siting and design of 
stream restoration projects to ensure long-term success and improved effectiveness 
under changing climate conditions.

There are several limitations of our analysis. Tropical cyclones have contributed to 
some recent extreme precipitation and streamflow events in the study region (Huang 

Method P0 (counterfactual) P1 (historical) RR (90% CI) FAR

Gamma 0.0163 0.0252 1.55 (1.23, 1.92) 0.355

Nonparametric 0.0164 0.0197 1.20 (0.828, 1.74) 0.167

Table 1. Probabilities of an extreme streamflow event in the counterfactual (hist-nat) and 
historical/SSP245 scenarios and the resulting risk ratio and fraction of attributable risk.
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et al. 2018), but any changes in these storms are unlikely to be captured in the coarse 
resolution global climate models examined here (van der Wiel et al. 2016). Potential 
and actual evapotranspiration are complex functions of many factors including tem-
perature, radiation, and wind. The value of EP is typically approximated using a few 
reliable climate model variables, such as the monthly mean minimum and maximum 
temperatures used by the Hargreaves and Samani (1982, 1985) method in this study. 
Other methods, like the Hamon (1961) method, assume that EP can be approximat-
ed solely by monthly mean temperature, and experiments showed that this method 
would flip the streamflow risk ratios (see Table ES2). However, methods that use only 
mean temperature exaggerate the drying effect of warming (Milly and Dunne 2017; 
Seong et al. 2018), in part because they do not account for reductions in stomatal con-
ductance as atmospheric CO2 increases (Milly and Dunne 2016). While the Hargreaves–
Samani (H-S) method also fails to account for stomatal changes, it does use the diurnal 
temperature range to modulate solar radiation, making its sensitivity more reliable 
than methods that only use mean temperature, and in our study region, the H-S meth-
od predicts a similar response of potential evapotranspiration to climate change as 
methods that do account for radiation, winds, and humidity (Milly and Dunne 2017). 
We did not apply weighting to account for the varying ensemble sizes of the CMIP6 
models used in this study, so our results are heavily influenced by CanESM5 and other 
models that contributed more runs. However, considering several model subsets with 
equal distributions of ensemble size would not change our conclusions (Table ES2). We 
did not consider the effects of changes in land use, reservoir storage, or consumptive 

Fig. 2. (a) Time series of model mean temperature, precipitation, and water balance simulated streamflow under the two 
climate forcing scenarios. (b) Separate effects of changing temperature and precipitation on streamflow risk. Experiment “T 
change” accounts for the effects of warming on both evapotranspiration and rain/snow mixing ratios, while experiments “EP 
change only” and “Rain/snow change only” capture the effect of warming only on the respective factors.
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use, all of which likely had a small effect on annual mean flows to the Chesapeake Bay 
(e.g., Najjar 1999). The effects of changes in precipitation intensity and frequency at 
submonthly time scales are also not included. However, the observation-driven water 
balance model was able to accurately simulate the 1971–2011 calibration period with-
out considering these changes.

Several of the potential limitations to this study also suggest fruitful areas for future 
research. Our confidence about changes in hydrological extremes can be improved by 
research into the uncertainty contributed by the choices of potential evapotranspi-
ration formula, climate models and scenarios, and bias correction and downscaling 
algorithms. Although the monthly water balance model performed well, more sophis-
ticated hydrological models could account for changes in variables other than tem-
perature and precipitation, such as wind speed, and could be used to attribute chang-
es in extremes in smaller watersheds and rivers. Finally, we found that the gamma and 
nonparametric attribution methods for determining probability yielded similar results 
but disagreed about whether the identified increase in the risk of extreme streamflow 
is statistically significant; future work would benefit from additional research into hy-
drological extreme event attribution methods.
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Anthropogenic forcing increased the likelihood of 
the 30-day high rainfall over Ontario and Quebec 
that contributed to the 2019 Ottawa River floods by 
a factor of 2 to 3.

Spring 2019 saw a record-setting flood on the Ottawa 
River, impacting parts of the provinces of Ontario and 
Quebec in Canada. The river crested on 1 May, but the 

state of emergency in Ottawa lasted into the second week 
of June. The floods resulted in thousands of people evac-
uated, extended states of emergency, and about $200 mil-
lion in insured losses (IBC 2019). This flood came just two 
years after the previous record flood for the region.

The 2019 flood was fed by a month of well above average 
rainfall over the basin, demonstrated in Fig. 1a using the 
maximum 30-day accumulation from spring (March–May) 
expressed as an anomaly relative to the 1981–2010 mean of 
spring 30-day accumulations. This included contributions 
from several days with heavy rainfall, shown in Fig. 1b as 
counts of days exceeding the local 1981–2010 90th percen-
tile. In addition, the ground was still frozen throughout this 
period, limiting infiltration of the rainwater and increasing 
flow over the land surface. The melting of above-average 
snowpack upstream also contributed to the flood.
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Fig. 1. (a) Spring Rx30day anomaly in mm and (b) the count of heavy rainfall days during spring 
(March–May) from ERA5. The light gray outline is the Ottawa River Basin (ORB) and the white 
circle the city of Ottawa. The dark gray boxes indicate the two regions used in this analysis, 
the smaller encompassing the ORB (~271,000 km2) and the larger including much of Ontario 
and southern Quebec (ON/QC) (~2,576,000 km2). (c),(e) Time series for the Rx30day anomaly and 
(d),(f) count of heavy rainfall events averaged over (c),(d) the larger ON/QC region and (e),(f) the 
smaller ORB region. Individual realizations from ALL simulations are in red and NAT simulations 
in blue. Multimodel ensemble means are in bold, with equal weight for each model. ERA5 is in 
black, with the 2019 value emphasized with the horizontal dashed line.

In this region, most spring floods are related to snowmelt, often in combination 
with heavy rainfall (Buttle et al. 2016; Teufel et al. 2019; Lin et al. 2019). Here, we in-
vestigate the anthropogenic influence on the 2019 Ottawa River flood, with a focus on 
the rainfall component.

Data and methods.
We use a multimodel ensemble of CMIP6 simulations (Eyring et al. 2016; see Table ES1) 
with all available realizations that provide daily rainfall data. This includes 90 realiza-
tions with both anthropogenic and natural forcing (ALL) that combine historical forc-
ing with SSP3–7.0 beginning in 2015 (O’Neill et al. 2016). The different scenarios do not 
noticeably diverge through the dates we use (2023); thus scenario choice should have 
little impact. A set of 48 natural-only (NAT) forcing simulations from the Detection and 
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Attribution Model Intercomparison Project (DAMIP; Gillett et al. 2016) will represent 
the reference, or counterfactual world, for the attribution. The ERA5 reanalysis (C3S 
2017) serves as a representation of the observations. ERA5 improves the biases of its 
predecessor, ERA-Interim, and in terms of driving a hydrologic model is as skillful as 
using observations in most regions of North America (Tarek et al. 2020). The ranges 
of the trend and variability of monthly precipitation over 1981–2019 from the CMIP6 
models both include the values from ERA5. There is not sufficient station density in 
this region to estimate a regional average that is comparable to the models, but the 
timing of the 2019 spring maximum 30-day rainfall from ERA5 is similar to that from 
two stations in Ottawa, Ontario (see Fig. ES1 in the online supplemental material).

The Ottawa River system contains several reservoirs, particularly in the northern 
tributaries. The reservoirs are typically emptied prior to the spring freshet for flood 
prevention and receive contributions from snowmelt from almost half of the basin. 
Because of this regulation capacity, major flood events are usually caused by a long 
period of heavy rainfall over a few weeks, in combination with the snowmelt. As such, 
the spring maximum 30-day rainfall accumulation (Rx30day) was calculated for each 
year to represent rainfall contributing to a spring flood. Similarly, monthly precipita-
tion was used in an event attribution study for a previous flood in this basin (Teufel 
et al. 2019). Rainfall accumulations were determined by summing precipitation from 
days with a mean temperature greater than 0°C, which should capture the distinction 
between rain and snow in most cases. Model anomalies were remapped to a common 
1.5° grid. After calculating regional averages, the maximum 30-day period was cho-
sen. Additional data processing details are described in the supplemental material. 
Regional averages were determined for a rectangle enclosing the Ottawa River Basin 
(ORB), which is where the flood occurred. Changes in extreme precipitation are often 
small compared to natural variability, especially at small scales. Since variability is 
smaller over a larger region, we also use an area covering the majority of Ontario and 
southern Quebec (Fig. 1). For attribution, the event threshold was the standardized 
(by subtracting the mean and dividing by the standard deviation; see supplemental 
material) 2019 spring Rx30day from ERA5. NAT anomalies and standardization were 
computed relative to ALL simulations of the same model.

To account for the role of heavy rainfall, we also calculated the number of heavy 
rainfall days during spring each year. Heavy rainfall days were defined for each grid 
box as those exceeding the 90th percentile from spring days over 1981–2010 and us-
ing the method of Zhang et al. (2005). Exceedance counts were determined on each 
model’s native grid and then remapped to the common grid before the calculation of 
regional averages. NAT exceedances used the 90th percentile from an ALL simulation 
by the same model. For attribution, we used event thresholds from 7 to 12 days.

For event attribution, we use the standard risk (probability) ratio (PR) framework 
(e.g., NASEM 2016) to compare the ratio of the probability of occurrence between ALL 
and NAT forcing simulations. To calculate probabilities by counting exceedances, ALL 
data were pooled from ensemble members for 2014–23, a 10-yr period centered on the 
2019 event, and NAT from 1996–2020. The NAT simulations end in 2020 and, given 
the general stationarity, a longer period can provide more robust estimates of smaller 
probabilities. The 5th to 95th percentile range was determined by randomly resam-
pling both ALL and NAT independently.

Results.
Maps of the 2019 spring Rx30day anomaly and the number of heavy rainfall days from 
the ERA5 reanalysis are shown in Figs. 1a and 1b, respectively. There is a large area of 
positive rainfall anomalies over the ORB, southeastern Ontario, and the Great Lakes 
region. This area coincides with some high counts of heavy rainfall days.

For the spring Rx30day anomalies using ERA5, the 2019 anomaly is one of the larg-
est in the record (Figs. 1c,e). The 2017 value is only slightly larger and was associated 
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with another high-impact spring flood. A slight positive trend is apparent in the re-
analysis data between 1981 and 2019. In the CMIP6 ensemble, ALL anomalies are gen-
erally more positive than NAT anomalies, indicating higher rainfall with ALL forcing. 
The ensemble mean is calculated giving equal weight to each model, but only minor 
differences were noted if equal weight is instead given to each realization. The ensem-
ble spread covers a wide range of anomalies.

Histograms for the standardized Rx30day anomalies show the ALL data shifted 
slightly toward larger values, compared to the NAT realizations. The difference be-
tween the ALL and NAT distributions is more distinct for the larger Ontario/Quebec 
region than for the smaller ORB region. The PR for the standardized 2019 spring Rx-
30day is greater than 1.0 for both the regions (Fig. 2c), implying an increase in likeli-
hood due to anthropogenic forcing. We estimate that the 2019 Rx30day is about 3 times 
as likely with the inclusion of anthropogenic forcing for the larger region and about 2 
times as likely for the smaller region. The error bars are wide, implying large uncer-
tainty on the estimated PR. However, there is confidence of an increase in likelihood, 
particularly for the larger region.

Similarly, for the number of heavy rainfall days, 2019 and also 2017 show the largest 
values in the record for ERA5 (Figs. 1d,f). Slightly larger values, including the most 
extreme counts, are found in the ALL simulations compared to those from NAT. A shift 

Fig. 2. Histograms for (a),(b) the standardized spring Rx30day anomaly and (d),(e) the number of heavy rainfall days expressed 
in percent of values. ALL is shown in red and NAT in blue. Probability ratios for the (c) standardized Rx30day anomaly and 
(f) number of events are shown for the larger region in purple and the smaller region in teal. The higher counts in the larger 
region do not occur in either the ALL or NAT simulations. A horizontal line at 1.0 indicates equal likelihood between ALL and 
NAT, with values larger than 1.0 indicating an increase in likelihood in the ALL simulations.
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toward higher counts of heavy rainfall days under ALL is also demonstrated through 
the histograms in Figs. 2d and 2e. PRs for the number of days are only slightly larger 
than 1.0 for the smaller count thresholds (Fig. 2f). Larger PRs but also larger uncertain-
ties are found with most of the higher count thresholds. Overall, we find that anthro-
pogenic forcing resulted in an increase in the likelihood of a higher number of heavy 
rainfall days.

Conclusions.
An increased likelihood of flood-producing rainfall has been identified for other 
events in Canada and the neighboring regions of the United States (Teufel et al. 2019, 
2017; Szeto et al. 2015; Winter et al. 2020). Our results are in agreement with those of 
Teufel et al. (2019), who performed an assessment of the 2017 Ottawa River floods. Us-
ing a different set of model simulations at a much higher resolution, they found a small 
increase in likelihood for the flood-producing monthly rainfall. However, they did not 
identify an attributable change in surface runoff and it was suggested that a warm-
ing-induced decrease in spring snowpack could offset the increased precipitation.

Event attribution PRs depend on the event definition, including the specific loca-
tion and spatial and temporal scales used. For our analysis of flood-inducing precipi-
tation, different regions, in size and/or location, different event thresholds, a different 
spring time period, or a different set of models in the ensemble may change the attribu-
tion results. Exact PR values will likely depend on the specific choices, but we expect 
the finding of a small increase in likelihood to be consistent across slight changes in 
framing. This is confirmed in Fig. ES2, where the PRs change only slightly if an Rx-
20day metric or a 15-year ALL period is used instead. Even with making different meth-
odological choices, we reach the same general conclusion as Teufel et al. (2019) for 
the 2017 flood. Additionally, Kirchmeier-Young et al. (2019) demonstrated consistent 
changes in likelihood between Rx1day and Rx30day in this region. Finally, increases 
in extreme precipitation are consistent with a warming atmosphere.

Flood events are complex and often the result of the interaction of many variables, 
including rainfall, snowpack, and characteristics of the land surface. While increases 
in the likelihood of large positive precipitation anomalies are increasingly identified 
and attributed to anthropogenic climate change, the interaction of rainfall with other 
variables to produce a high-impact flood in a warming climate remains uncertain.
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Extremely warm winter days in central England, as 
in 2018/19, are still very rare, but human influence is 
estimated to have made them about 300 times more 
likely.

I n stark contrast to the frigid close of the 2017/18 win-
ter in the United Kingdom (Christidis and Stott 2020), 
daytime winter temperatures above 20°C were recorded 

for the first time in the country only a year later, with a 
maximum of 21.2°C at Kew Gardens on 26 February 2019.1 
Strong anticyclonic conditions at the end of the winter 
season steered exceptionally mild tropical maritime air 
over western Europe and were identified by Kendon et al. 
(2020) as a key driver of the extreme U.K. temperatures. 
Their study suggests that the atmospheric state alone 
would be sufficient to raise U.K. temperatures above 20°C, 
even without the effect of human influence on the climate. 
Here, we carry out a complementary attribution study to 
investigate extremes in the warmest day in winter, de-
scribed by the maximum daytime temperature (Tmax) in 

1 See https://www.metoffice.gov.uk/about-us/press-office/news 
/weather-and-climate/2019/february-and-winter-statistics.
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central England, and we quantify the anthropogenic effect on their present and future 
probabilities. Central England Tmax observations are available since 1878 (CET dataset; 
Parker et al. 1992) and manifest a record of 18.1°C on 26 February 2019 (i.e., the same 
date as the U.K. national record).

Observations and atmospheric circulation.
Time series of the daily Tmax plotted for every winter (December to February) in the 
CET dataset (Fig. 1a) show a steep increase at the end of winter 2018/19 with tempera-
tures rising well above previous records. The year also stands out as a striking ex-
treme in the observational time series of the warmest winter day in central England 
(Fig. 1b), reaching an anomaly that is approximately 5 times the standard deviation 
of the detrended observations. The observed anomaly of +5.2°C relative to the base 
period 1901–30 sets the threshold for the definition of extreme events in this study: the 
warmest day anomalies above this threshold are counted as extremes. The anomaly is 
1.5 times higher than the previous record (+3.5°C) and 6 times higher than the 1900–
2018 warming (+0.87°C) estimated by fitting a linear trend to the CET data. 500-hPa 
geopotential height (Z500) data from the NCEP–NCAR reanalysis (Kalnay et al. 1996) 
illustrate the deep anticyclonic anomaly over northwestern Europe present on the day 

Fig. 1. (a) Time series of the observed daily Tmax in central England during winter months. 2018/19 is shown in red and all oth-
er winters in blue. (b) Time series of the warmest day in winter in central England. Anomalies are relative to 1901/02–1930/31. 
Observations are plotted in black and bias-corrected CMIP5 data from ALL and NAT simulations in red and blue respectively. 
2018/19 is marked by the cross and the horizontal dotted line. The yellow line represents the forced response (mean of the ALL 
simulations). (c) NCEP–NCAR Z500 anomalies on 26 Feb 2019. Anomalies are relative to the winter mean Z500 during 1961/62–
90/91. (d) Time series of Z500 anomalies over the United Kingdom [green box in (c)] for the warmest day in winter.
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of the Tmax record (Fig. 1c). Positive Z500 anomalies are usually associated with the 
warmest day in winter in most years, as illustrated in Fig. 1d, which shows the mean 
Z500 anomaly over the United Kingdom on the days of the CET winter maxima since 
the 1960s.

CMIP5 data.
The change in the likelihood of extreme events is assessed with a risk-based attribution 
methodology (Stott et al. 2016), by comparing their probability in the real world with 
all external forcings acting on the climate (ALL), and a hypothetical “natural” world 
without the anthropogenic effect (NAT). We use data from 16 models that contributed 
to the phase 5 of the Coupled Model Intercomparison Project (CMIP5; see the online 
supplemental material). Although the models typically generate several simulations 
of the ALL and NAT climate, here we employ one simulation per model per experiment 
and estimate for each simulation the warmest winter’s day Tmax anomaly over central 
England in all years since 1900 (Fig. 1b). The ALL simulations were extended to the end 
of the twenty-first century with the RCP4.5 scenario. The forced response is estimated 
by the mean of the ALL simulations (yellow line in Fig. 1b).

Evaluating the models against CET observations (see the supplemental material) 
shows that although they yield trends consistent with the observations, their variabil-
ity is smaller. A simple bias correction is thus applied that inflates their standard devi-
ation to match it to the observations. Once the models are corrected, their variability 
and distribution of the warmest day in winter agree well with the CET dataset. The vari-
ability correction is pointed out as a major caveat of the analysis that could adversely 
affect the probability estimates, especially if there are future changes in variability 
that are not correctly captured by the models. However, neither the observations nor 
the models indicate a notable temporal change in the variability of the warmest day in 
winter during the observational period, so the effect is likely to be minor.

Our analysis compares the likelihood of extreme events under different climatic 
conditions. The NAT climate is assumed stationary and we therefore utilize a sample 
of all simulated years (16 NAT simulations × 105 years in the period 1900/01–2004/05). 
Since the ALL climate has a warming trend, we first remove an estimate of the re-
sponse to external forcings from each model’s time series and subsequently adjust 
them to the mean forced response in (a) years 1900–20 (early twentieth century), (b) 
2008–28 (present climate), and (c) 2080–2100 (late twenty-first century). This pro-
duces samples of 3200 simulated events (16 simulations × 200 years in the period 
1900/01–2099/2100).

CMIP5 attribution.
Probabilities of extreme events (i.e., instances of threshold exceedance) are computed 
from the CMIP5 data with the generalized extreme value (GEV) distribution and their 
uncertainty is estimated with a simple Monte Carlo bootstrap procedure (Christidis 
et al. 2013). Return time (inverse probability) and risk ratio estimates are reported in 
Table 1. Extreme years like 2018/19 are currently highly rare with return times of the 
order of a thousand years, but they become increasingly common, expected to occur 
once or twice a century by 2100. Their likelihood in the natural climate is too small to 
be estimated with the limited sample size from the NAT simulations, but is approx-
imated with the larger ALL sample for the early twentieth century and found to be 
near-zero (Table 1). The temporal shift in the distribution of the warmest day is depict-
ed in Fig. 2a. The intensity of extremes is also on the rise: events as rare as 2018/19 
presently correspond to a + 5.2°C anomaly, which would only be +4.4°C in the early 
twentieth century, increasing to +7°C by 2100.

As an independent check of the model results, empirical return time estimates 
are also derived from the observations. As in Christidis and Stott (2020), nonstation-
arity is accounted for by removing the modeled forced response from the observa-
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tional time series and then adjusting them to the mean forced response in different 
periods. Using the GEV distribution, it is estimated that the return time increases 
from ~105 years in the early twentieth century to 1400 years at present and 78.5 years 
by 2100. The observationally based estimates are hence in good agreement with the 
CMIP5 results.

Table 1. Return time and risk ratio estimates from the CMIP5 analysis. Extremes in the 
warmest day in winter in central England have temperature anomalies above the +5.2°C 
threshold observed in winter 2018/19. Reported best estimates correspond to the 50th 
percentile and the 5%–95% uncertainty range is given in parentheses.

Return time (yr)

Present day (2008–28) 1161 (740 to 5020)

Early twentieth century (1900–1920) 3.4 × 105 (5.7 × 104 to infinity)

Risk Ratio: Prob (present)/Prob (past) 282 (26 to infinity)

Return time (yr)

Late twenty-first century (2080–2100) 64 (54 to 90)

Risk ratio: Prob (future)/Prob (past) 5136 (806 to infinity)

Fig. 2. (a) Normalized distributions of the warmest day in winter in central England constructed with CMIP5 data 
from the ALL simulations for the present climate (years 2008–28; solid line, filled curve), the climate of the early 
twentieth century (years 1900–1920; dashed line), and the climate of the late twenty-first century (years 2080–
2100; dotted line). (b) The same CMIP5 distribution as in (a) is shown for the present climate (solid line, filled curve), 
together with the distribution constructed with HadGEM3-A data from the ALL (black dashed line) and NAT (green 
dashed line) simulations for the same period. The 2018/19 anomaly is marked by the red vertical line.
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HadGEM3-A attribution.
A complementary analysis with ALL and NAT simulations of the winter 2018/19 pro-
duced by the HadGEM3-A attribution system of the Hadley Centre (Ciavarella et al. 
2018) is also carried out. HadGEM3-A provides 525 simulations for each experiment 
and as it is an atmosphere-only model, it prescribes the oceanic state using HadISST 
observations (Rayner et al. 2003; also, see the online supplemental material). Like the 
CMIP5 ensemble, the model variance is also small and is corrected as described earli-
er. The sample size of simulated events is too small to compute the near-zero likelihood 
in the NAT climate. Unlike the CMIP5 analysis, it is also not feasible to estimate the 
probability in the ALL climate of 2018/19, since the HadGEM3-A distribution is narrow-
er and thus the event lies farther into the warm tail (Fig. 2b). The use of a single model 
(HadGEM3-A) rather than a multimodel ensemble with a mixture of climate change 
sensitivities as well as the conditioning on the observed oceanic state may both con-
tribute to the smaller spread of the distribution. As atmosphere–ocean coupled models 
sample the range of all possible states of the ocean, they may indeed yield a broader 
distribution than atmospheric models, providing a general probability estimate irre-
spective of the oceanic conditions.

Discussion.
Our study employs two methodologies that frame the attribution question in two dif-
ferent ways. The question in the multimodel CMIP5 analysis is “What is the likeli-
hood of extremes with and without human influence in the general case (i.e. under 
any possible conditions)?”. On the other hand, the single-model HadGEM3-A analysis 
asks: “What is the likelihood, given the oceanic conditions at the time of the 2018/19 
event?”. Both questions are valid and useful, but the two approaches can lead to differ-
ent answers, as demonstrated in Fig. 2b. While a recent report by the United States Na-
tional Academies of Sciences, Engineering, and Medicine (NASEM 2016) encouraged 
multimethod approaches in studies of extreme events, one should also be careful not 
to interpret apparent inconsistencies as limitations, when different methods may sim-
ply attempt to answer different questions. A more detailed assessment of the framing 
effect in event attribution is given in Christidis et al. (2018) and Fischer et al. (2018).

The CMIP5 analysis reveals that winter CET extremes like in 2018/19 are rare even 
in today’s warmer climate, but still about 300 times more likely because of human 
influence. Moreover, they are shown to become decidedly more common in the future, 
expected to occur at least once a century by 2100, and probably more frequently under 
higher emissions scenarios than RCP4.5. While the effect of the atmospheric circula-
tion was key for the reference event, here we only consider an unconditional framing 
without explicitly assessing the effect of dynamics. Previous work has suggested that 
Arctic warming may impact U.K. extremes via dynamical changes (Hanna et al. 2017), 
although this link has not been robustly established (Blackport and Screen 2020). A 
possible strengthening of the Atlantic jet (Lee et al. 2019) may constitute another dy-
namical driver of winter changes. Taking the overall effect of anthropogenic climate 
change into account, milder winters are expected in the United Kingdom (Murphy 
et al. 2018), with less frequent cold extremes and new high temperature records.
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CMIP6 simulations suggest that anthropogenic 
greenhouse gas forcing has at least doubled the 
likelihood of 2015–19 like prolonged droughts over 
the South African Western Cape, with large cancel-
lation due to other anthropogenic effects.

S outh Africa’s Western Cape (WC) with its agricul-
ture-based economy and reservoir-based water sup-
ply system, is vulnerable to drought, and during 

2015–19 it experienced a multiyear drought condition. A 
recent study (Otto et al. 2018) reported that anthropogen-
ic influence increased the likelihood of exceeding rainfall 
reduction over the Cape Town region during the first three 
years of that drought (2015–17) by a factor of 3. During that 
period, Cape Town experienced a water crisis threatening 
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a shutdown of water supply to the four million residents (Masante et al. 2018) with wa-
ter supply dropping to 20% of capacity in January 2018 (Muller 2018). In 2019, the WC 
experienced further dry conditions, extending the earlier drought and resulting in 2019 
crop yield reduction by 25% (AGRI SA 2020).

The recent anthropogenic warming (IPCC 2018) likely caused drying trends over 
Southern Hemisphere subtropics associated with Hadley cell expansion (Purich et al. 
2013; Burls et al. 2019) and is expected to increase drought durations over South Africa 
in the future (e.g., Ukkola et al. 2020). However, understanding of anthropogenic influ-
ence on the observed prolonged drought duration (e.g., multiple years) remains limit-
ed. Here, we investigate anthropogenic impact on meteorological drought duration in 
the broader WC region, posing the following questions: How unusual is the duration 
of the 2015–19 WC drought? Is there an anthropogenic contribution, particularly the 
contribution of greenhouse gas increases, to such prolonged droughts? By answering 
these questions, this study provides actionable information to policy makers and local 
stakeholders for drought mitigation and management.

Data and methods.
First, we computed regional averages of monthly precipitation over the WC from CRU 
(version TS v4.04; Harris et al. 2014), GPCC (version 2018; Schneider et al. 2011), and 
GPCP (version 2.3; Adler et al. 2018) datasets, rather than from station observations 
that cover only the western (wetter) part of the WC (1933–2017; Wolski et al. 2020). We 
found some stations excluded in the CRU and GPCC data since 2000 and 2010, respec-
tively. The impact of changing numbers of stations is lower in GPCC than in CRU over 
the WC (Wolski et al. 2020); also, GPCC includes fewer observational stations before 
1950 and after 1998 than CRU (Otto et al. 2018). Nevertheless, an overall consistency is 
found between gridded data and station observations (Figs. 1a–c).

Next, we computed the 12-month Standard Precipitation Index (SPI-12) over the 
study region (Fig. 1f; McKee et al. 1993) as the WC drought index. SPI-12 threshold val-
ues of −0.8 and 0.2 were used to identify drought onset and recovery, respectively, fol-
lowing Mo (2011). We also computed the Standardized Precipitation Evapotranspira-
tion Index (SPEI) using the CRU data and found no significant difference from SPI (not 
shown), confirming the dominant role of precipitation in determining the WC drought 
(Otto et al. 2018).

To identify anthropogenic influence on the long-lasting drought, five CMIP6 mod-
el simulations were analyzed over 1901–2019: historical (ALL; 32 ensemble runs), 
natural-only (NAT; 30), and greenhouse gas-only (GHG; 25), which give 289, 324, and 
233 drought events, respectively. First, seven CMIP6 models were selected based on 
the availability of multiple ensemble members (≥3 members for ALL, NAT, and GHG; 
see Table ES1 in the online supplemental information) and then the five models were 
finally selected based on the performance of the seasonality of precipitation over WC 
(Fig. ES1). The ALL simulations (ended in 2014) were extended up to 2019 using the 
corresponding Shared Socioeconomic Pathway 2.45 or 3.70 scenario runs, which were 
chosen based on the data availability considering their similar radiative forcing over 
2015–19 (O’Neill et al. 2016). The ALL simulations include anthropogenic (increases in 
greenhouse gases and aerosols) and natural forcings (changes in solar and volcanic 
activities) while the NAT simulations contain only natural forcings. The GHG simu-
lations are driven by only greenhouse gas increases, designed to isolate responses 
to GHG forcing from other forcings including aerosols, solar, and volcanic forcings 
(Meinshausen et al. 2017).

We used an areal conservative remapping method to interpolate all model data onto 
the observed grids (50 km × 50 km) before taking WC area means, which accounts for 
fractional contributions of the input grid boxes to each output grid box. Next, we fitted 
gamma distribution to regional mean precipitation from ALL simulations and then 
used it to compute SPI-12 for the ALL, GHG, and NAT simulations of the corresponding 
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model. Finally, we computed the duration of each drought event as done in the obser-
vations and compared the simulated frequency of long-term (≥2 yr) droughts [the ratio 
of the number of long-term drought events to the number of all drought events] within 
a 20-yr moving window (McCabe et al. 2004) with the observed.

To construct a multimodel probability distribution of drought duration, we used the 
last 30-yr segment (1990–2019) from the ALL, GHG, and NAT simulations and fitted the 
gamma distribution function to durations of identified drought events. We used the 
maximum likelihood estimation method for parameter estimation. Fitted gamma dis-
tributions are well matched with histograms of drought durations (positively skewed 
with a large range from months to years; see Fig. ES2).

We estimated the probability ratio of long-term drought duration [PR = (PALL or PGHG)/
(PNAT), where PALL, PGHG, and PNAT are the probabilities of exceeding the drought dura-
tion thresholds (2, 3, 4, or 5 years) from the ALL, GHG, and NAT ensemble runs, respec-
tively]. We computed 90% confidence interval (CI) of PR using a bootstrap method. 

Fig. 1. Time series of the water year (WY; November through October of the following year) (a) total precipitation and the (b) 
3-yr and (c) 5-yr running means of the WY annual total precipitation. In (a)–(c), orange dotted lines depict the stations data 
(1933–2017) used in Wolski et al. (2020). Also shown are ranks of the 5-yr mean precipitation over November 2014 through 
October 2019 from the (d) GPCC and (e) CRU data. Colored grid cells in (d) and (e) depict our study region, the Western Cape 
(red, orange, and yellow depict the lowest, second lowest, and third lowest, respectively, since 1901). Time series of monthly 
drought (SPI-12) index over 2014–19 (f). Red and blue dashed lines depict the threshold values for drought onset and recovery, 
respectively. (g) Duration of the observed drought events identified from the SPI-12 values: CRU (black), GPCC (green), and 
GPCP (blue).
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We first randomly select a sample (with repetition) of 289, 324, and 233 drought events 
from the fitted distribution of ALL, NAT, and GHG simulations, respectively. Then, we 
fit the gamma distribution to the drought durations of random samples and calculate 
PALL, PGHG, and PNAT and PRs. Finally, we repeated the entire procedure 10,000 times 
and estimated the 90% CI of PR.

Results.
The WC had anomalously low precipitation during the water year 2019 (WY 2019; de-
fined based on precipitation’s seasonality as November 2018–October 2019; Fig. 1a). 
WY 2019 is the second and fourth driest since 1901 in CRU and GPCC, respective-
ly. Three- and five-year averages ending in 2019 are the driest in all three datasets 

Fig. 2. (a) 20-yr moving averages of the frequency of long-term drought events from 
the observations (black circles, plus signs, and cross signs depicts CRU, GPCC, and GPCP, 
respectively) and the frequency of long-term drought events (divided by total number of 
drought events within the 20-yr moving window) from model simulations. Orange, red 
and green dots depict the MME drought frequency from the ALL, GHG, and NAT forcing 
runs, respectively. The error bars depict the range within plus or minus one standard de-
viation of the MME from each experiment runs. (b) Gamma distributions fitted to drought 
duration from the ALL (orange), GHG (red), and NAT (green) forcing runs over the 1990–
2019 period (see Fig. ES2 for histograms). (c) Probability ratios (PRs) between ALL and 
NAT (orange) and between GHG and NAT (red) for drought duration ≥ 2, 3, 4, and 5 years, 
respectively. Lines indicate 90% confidence interval (CI) range of PRs. See text for details.
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(Figs. 1b,c). The extremely long-lasting drought started in early 2015 and continued by 
WY 2017 (Otto et al. 2018). Rainfall in WY 2018 was still low but slightly higher than 
rainfall in WY 2016. The dry conditions during 2019 ranked the 2015–19 precipitation 
the lowest (since 1901) over 37% (GPCC) or 68% (CRU) area of WC (Figs. 1d,e), extending 
the 2015–17 drought to December 2019 (Fig. 1f).

We detected 41, 43, and 15 events over 119, 119, and 41 years from the CRU, GPCC, 
and GPCP precipitation-based drought index, respectively (Fig. 1g). The expected 
return period of identified droughts ranges from 2.7 (119 years/43 events or 41/15) to 
2.9 years (119/41). CRU and GPCC share longest droughts over 1925–28, 1944–48, and 
2015–19 but with different ranks. The 2015–19 drought duration is the longest (CRU) or 
third longest (GPCC) longest since 1901, with small differences (<4 months) among the 
observational data (63, 59, and 61 months from CRU, GPCC, and GPCP, respectively). 
GPCC and GPCP show no significant trend in the short-term (herein, <2 yr) and long-
term (≥2 yr) drought frequencies. CRU shows that four out of seven long-term droughts 
occurred after 1995, but this might be partly due to station base changes identified by 
Wolski et al. (2020). The disparity between datasets warrants further investigation of 
uncertainty sources in gridded data.

The frequencies of long-term droughts in the GHG simulations show an upward 
trend since 2000 (consistent with the CRU data) while the ALL and NAT simulations 
show no trend over time (Fig. 2a). Over 1970s–1990s, high frequencies of long-term 
droughts in GPCC are consistent with those in the ALL and GHG simulations. The mul-
timodel estimated gamma distribution (a red line in Fig. 2b) for GHG has a longer tail 
than that for the ALL or NAT simulations, with little difference found between ALL and 
NAT. This implies that the likelihood to have long sustained drought is significantly in-
creased by GHG increases while other external forcing such as anthropogenic aerosols 
may offset the GHG-induced increase in long-term drought frequency.

The PR value from ALL and NAT simulations for 5-yr duration or longer is 0.8 (90% 
CI of 0.3–2.3; Fig. 2c). The PR estimates for the duration of two, three, and four years or 
longer are similar: 0.99 (0.8–1.3), 0.94 (0.6–1.6), and 0.9 (0.4–1.9), respectively. Little 
difference in PR between ALL and NAT suggests a lack of significant anthropogenic 
influence on multiyear drought frequencies over the WC region. In contrast, the PR es-
timates from GHG and NAT simulations show that greenhouse gas–induced warming 
increases the likelihood of droughts >5 years in duration (like the 2015–19 drought) by 
a factor of 4.7 (the 90% CI of 1.9 to 11.6). The PR estimates for the drought with dura-
tion of 2, 3, and 4 years or longer are also larger than unity: 1.6 (1.2–2.0), 2.2 (1.4–3.4), 
and 3.2 (1.7–6.1), respectively, supporting the important role of GHG forcing in driving 
long-lasting droughts.

In summary, the 2015–19 WC drought is the longest (either the longest or third lon-
gest) drought on record since 1901, and still continues as of the end of 2019. Based on 
the five CMIP6 simulations, which can reproduce the observed precipitation seasonal-
ity, GHG forcing has likely contributed to the increased probability of such long-lasting 
drought, at least by a factor of 2, compared to conditions without human influences 
(NAT). Results remain unaffected when including the two models that have lower per-
formance in precipitation seasonality, suggesting weak sensitivity of our attribution 
results to model skills. Although some previous studies suggested Hadley cell expan-
sion as a possible mechanism for increased duration of short-term droughts (Ukkola 
et al. 2020), historical simulations (ALL), including non-GHG anthropogenic forcings, 
do not show clear increases in the frequency of long-term droughts. It suggests possi-
ble offsetting effects by anthropogenic aerosols (cf. Rowell et al. 2015). Quantifying the 
relative contribution of GHG and other anthropogenic effects and exploring the asso-
ciated physical mechanisms including Hadley expansion influence (Garfinkel et al. 
2015; Nguyen et al. 2015; Zhao et al. 2020) as well as El Niño (Yuan et al. 2013; Otto et al. 
2018) is an important task for the future risk assessment of the WC droughts.
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A multimodel analysis indicates that the 2019 Sep-
tember record high number of typhoons affecting 
South Korea was contributed to mostly by the very 
strong convection over northwestern India with no 
discernible anthropogenic contribution.

During 2019, seven typhoons [i.e., tropical cyclones 
(TCs)] hit South Korea, resulting in tremendous 
damages on the country’s infrastructure and econ-

omy through heavy rain and high winds (reported in The 
Korea Herald1,2). This is the largest number of annual TCs 
affecting South Korea since 1959; in particular, it was 
the first time since records began in 1904 that three ty-
phoons struck South Korea during September (Figs. 1a,c). 
While warm sea surface over the western North Pacific 
is important for overall typhoon activities (e.g., Zhang 
et al. 2016), the western North Pacific subtropical high 
(WNPSH) is known to strongly modulate typhoon land-
fall over East Asia since typhoons usually move north-
ward along its western boundary (Ho et al. 2004; M. Lee 
et al. 2019; Zhou and Lu 2019). In September 2019, the 
WNPSH was unusually strong with an extreme northwest 

1 http://www.koreaherald.com/view.php?ud=20190908000142.
2 http://www.koreaherald.com/view.php?ud=20190922000168.
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shift, as indicated by 5,880-gpm contours in Fig. 1a, which are typically used to depict 
its boundary (Liu and Chan 2013). The extreme development of the WNPSH was asso-
ciated with anomalous anticyclonic circulation developed in the upper troposphere 
from northeast China to Japan (Fig. 1b), which intensified southeasterly steering winds 
(mass-weighted horizontal winds from 850 to 300 hPa) over the East China Sea area 
(black box in Fig. 1b), guiding the typhoons toward the Korean Peninsula (cf. Zhou 
and Lu 2019). Both the zonal and meridional components of the area-mean steering 
flows are significantly correlated with the TC numbers affecting South Korea at 5% 
level (Fig. 1c, based on Spearman’s rank correlation using years with non-zero TCs). 
Given the observed and projected intensification of TCs landfalling over the northwest 
Pacific under warming (e.g., Mei and Xie 2016; H. Lee et al. 2019), the present study 
attempts to answer the question of whether global warming has contributed to the 
anomalous extreme steering winds.

Fig. 1. (a) September 2019 typhoon tracks and WNPSH (western North Pacific subtropical high) boundary location. (b) Spatial pat-
terns of anomalous geopotential height at 200 hPa (H200; shading), steering winds (vectors; only for wind speed ≥ 4 m s–1), and 
OLR (outgoing longwave radiation; blue contours; only for ≤ −20 W m–2). Green boxes indicate two regions used to define G200 
(H200 gradient index; see text for its definition). Yellow dots and cyan hatches represent record high H200 and OLR, respectively. 
Time series of (c) numbers of TCs affecting South Korea (nTC) and anomalous zonal and meridional steering winds (u, υ) averaged 
over the East China Sea area [120°–140°E, 25°–35°N; black box in (b)], and (d) G200 and area-mean OLR anomalies over north-
western India (OLRInd). Pearson correlation (r) and Spearman’s rank correlation coefficients (rs) are provided. (e) Boxplots of G200 
anomalies from CMIP6 and HadGEM3-A-N216 runs for strong and weak northwestern Indian convection in comparison with the 
2019 (red solid) and 1999 (red dotted) observed values. Composites of H200 anomalies (gpm) from (f) NCEP1, (g) CMIP6, and (h) 
HadGEM3-A-N216 (HG3) from years with stronger convection over northwestern India (black box) during 1981–2010; 30p and 70p 
represent 30th and 70th percentile, respectively. Black cross marks in (g) indicate more than 70% intermodel agreement in sign.



S53JANUARY 2021AMERICAN METEOROLOGICAL SOCIETY |

During September 2019, there was strong convection in northwestern India 
[Figs. 1b,d, based on outgoing longwave radiation (OLR) anomalies] related to the 
strong Indian monsoon and its delayed withdrawal (reported in The Indian Express3). 
The strong convection over northwestern India is known to induce anomalous up-
per-troposphere highs over South Korea during summer through the Rossby wave 
propagation mechanism (Kim et al. 2019, 2020; Yeo et al. 2019; Min et al. 2020). A simi-
lar teleconnection pattern was observed in September (Figs. 1d,f), which can be repro-
duced by the models (Figs. 1g,h; Fig. ES1). This suggests that the unusually strong Indi-
an monsoon may have contributed to the extreme number of TCs affecting South Korea.

The present study assesses anthropogenic and natural contributions to the Sep-
tember 2019 atmospheric circulation pattern conducive to the record high number 
of typhoons affecting South Korea using CMIP6 multimodel simulations as well as 
HadGEM3-A large-ensemble simulations performed with and without anthropogenic 
forcing (see below for details). Using a standard risk ratio (RR) approach to event attri-
bution (Stott et al. 2016; Otto 2017), we compared the probabilities of occurrence of the 
TC-related circulation pattern between real and counterfactual conditions (to assess 
anthropogenic contribution) as well as between strong and weak tropical convection 
conditions (to assess natural contribution).

Data and methods.
Observational data include monthly mean geopotential height and horizontal winds 
throughout the troposphere for 1951–2019 from NCEP1 reanalysis (Kalnay et al. 1996), 
TC information for 1951–2019 from the Korea Meteorological Administration (KMA; 
https://data.kma.go.kr/), monthly mean OLR for 1974–2019 (https://psl.noaa.gov/data 
/gridded/data.interp_OLR.html).

Multimodel datasets from phase 6 of the Coupled Model Intercomparison Project 
(CMIP6; Eyring et al. 2016) are used, which include historical (natural plus anthropo-
genic, called ALL), natural-only (NAT), and greenhouse-only forcing (GHG) simula-
tions (see Table ES1 in the online supplemental material). The data for 2010–19 from 
each experiment were used, assuming similar climate to 2019 conditions. Historical 
simulations (2010–14) were combined with corresponding Shared Socioeconomic 
Pathway (SSP) 2–4.5 scenarios (2015–19). High-resolution large-ensemble HadGEM3-A 
simulations performed for 2019 (referred to as HadGEM3-A-N216; Ciavarella et al. 2018; 
Vautard et al. 2019) were also used (Table ES2), which provide 525 members for real 
world (ALL) and counterfactual world (NAT) conditions. The observed 2019 SST and 
sea ice concentrations from HadISST1 (Rayner et al. 2003) was prescribed for ALL 
simulations. For NAT simulations, adjusted SST and sea ice concentrations were pre-
scribed after removing anthropogenic SST changes (delta-SST) from HadISST1. The 
delta-SST was estimated from four CMIP5 models (as ALL–NAT) and an observed 
trend, each of which have 105 ensemble members (Table ES2). Observations and all 
model simulations were interpolated on the same 2.5° × 2.5° grids of NCEP1 reanalysis. 
All variables were normalized prior to analysis using mean and standard deviation of 
each data obtained from 1981–2010 for robust comparison between observations and 
models (see below for sensitivity tests to model samples). NAT and GHG runs were 
normalized based on ALL climatology of each model.

As a proxy of anomalous southeasterly steering wind over the East China Sea area, 
we defined a gradient index of 200-hPa geopotential height anomalies (hereafter, 
G200) between the East Sea (Sea of Japan) area and the southern China area (green 
boxes, Fig. 1b). The resulting observed G200 has significant correlations with steer-
ing winds, northwestern Indian convection (Fig. 1d), and also with the number of TCs 
affecting South Korea (rs = 0.50). G200 indices were calculated for CMIP6 and Had-

3 https://indianexpress.com/article/explained/india-monsoon-rainfall-bihar-patna-floods-6054167/.
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GEM3-A-N216 simulations (Fig. 1e) and the RR was obtained for the 2019 G200 value 
in two ways. One (RRALL/NAT) is to calculate the ratio of the probability of occurrence 
of 2019-like positive G200 events between ALL and NAT, which quantifies human im-
pacts on TC-related atmospheric circulation patterns. The other (RRSC/WC) is to calculate 
the probability ratio between model samples with strong and weak Indian convection 
for ALL, NAT, or GHG separately (Fig. 1e) in order to examine Indian monsoon influenc-
es on the extreme G200 events. For this analysis, using normalized OLR (for CMIP6, 
based on each model) or precipitation (for HadGEM3-A-N216, due to data availability) 
averaged over northwestern India (black box in Fig. 1f), we selected samples with OLR 
≤ 30th percentile for strong convection (SC), with OLR ≥ 70th percentile for weak con-
vection (WC), and vice versa for precipitation. To test RR sensitivity to a less extreme 
G200 threshold, we used the value observed in 1999 (dashed line in Fig. 1e), when two 
TCs affected South Korea. The 5%–95% confidence intervals of RRs were estimated 
using the likelihood ratio method following Paciorek et al. (2018).

Results.
Figure 2 illustrates the Gaussian kernel density function of the normalized G200 for 
ALL, NAT, and GHG simulations from CMIP6 and for ALL and NAT runs from Had-
GEM3-A-N216. CMIP6 results show that the probability of extreme G200 events exceed-
ing the observed 2019 value is 2.97%, 3.24%, and 2.97% in ALL (PALL), NAT (PNAT), and 
GHG (PGHG), respectively (Table 1), indicating that the 2019-like extreme southeasterly 
flows occur rarely with similar probability across different forcings. The correspond-
ing RRALL/NAT is about 0.92 (5%–95% confidence interval is 0.46–1.81; Fig. 2f), suggest-
ing no detectable human influences. HadGEM3-A-N216 results present PALL and PNAT 
as 1.33% and 2.86%, respectively (Table 1), resulting in RRALL/NAT = 0.47 (0.21–0.96). A 
simple analysis (Fig. ES3a) indicates that relatively low probability of ALL runs from 
HadGEM3-A-N216 is partly due to the identical SST forcing prescribed, as opposed to 
the NAT runs, which include five different SSTs (see Table ES2). When applying the 
1999 observed threshold, RRALL/NAT remains close to unity for both model ensembles 
(Table 1). This result indicates that the September 2019 TC-related extreme circulation 
pattern is not attributable to human-induced global warming.

To assess the possible contribution of strong northwestern Indian convection on the 
extreme TC-related circulation pattern, we compared the probabilities of occurrence of 
the extreme G200 events between model samples with SC and those with WC. Results 
reveal that when the northwestern Indian convection is stronger, G200 density distri-

Table 1. Probability (%) of occurrence exceeding the observed G200 values from total samples (PTOT) and subsample with strong 
and weak convection over northwestern India (PSC and PWC, respectively). RR is calculated between ALL and NAT (RRALL/NAT) as 
well as between strong and weak convection (RRSC/WC). The 5%–95% uncertainty ranges of RR are provided in brackets.

Model
Observed 

year Experiment PTOT (%) PSC (%) PWC (%) RRSC/WC RRALL/NAT

CMIP6

2019

ALL 2.97 7.27 0.00 ∞ [5.49–∞]

0.92 [0.46–1.81]NAT 3.24 8.11 0.00 ∞ [6.24–∞]

GHG 2.97 5.41 1.80 3.00 [0.89–14.02]

1999

ALL 6.76 14.41 2.70 5.33 [2.15–17.17]

0.83 [0.54–1.28]NAT 8.11 17.12 0.90 19.00 [4.97–182.47]

GHG 7.30 14.41 2.70 5.33 [2.15–17.17]

HadGEM3- 
A-N216

2019
ALL 1.33 1.90 1.27 1.50 [0.34–7.76]

0.47 [0.21–0.96]
NAT 2.86 6.96 0.63 11.00 [2.71–107.64]

1999
ALL 4.95 7.59 3.80 2.00 [0.92–4.70]

0.74 [0.49–1.12]
NAT 6.67 11.39 3.80 3.00 [1.47–6.80]
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butions shift to right both for CMIP6 and HadGEM3-A-N216 (Fig. 2). The resulting PALL, 
PNAT, and PGHG clearly increase upon the stronger convection (Table 1), which can also be 
seen when applying the 1999 G200 threshold. WC samples exhibit the opposite results 
with decreased probability of extreme G200 events. RRSC/WC for CMIP6 is found to be at 
least 3 (based on best estimates), implying that the unusually strong northwestern In-
dian convection has contributed to the increased risk of September TCs affecting South 
Korea by intensifying anomalous southeasterly steering winds. HadGEM3-A-N216 re-
sults also show that PALL and PNAT are increased upon stronger convection and vice 
versa. Compared to CMIP6, however, RRSC/WC from this model is generally lower and 
its confidence interval includes unity in ALL simulations. This can be associated with 
the narrower ensemble spread related to the single SST prescribed as discussed above. 
When applying the 1999 observed threshold, RRSC/WC and its confidence intervals are 
increased, supporting the contribution of the extreme northwestern Indian convection 
to the record high number of TCs affecting South Korea by increasing the probability of 
occurrence of extreme steering flow patterns. Overall results can be interpreted based 
on the corresponding return periods (Fig. ES2). Sensitivity tests support the robust-
ness of our results to different sampling of models based on model skills for the Indian 
convection and teleconnection response (see Table ES1 and Figs. ES3b–e for details) 
although more comprehensive model evaluations are needed.

Fig. 2. Kernel density functions of normalized G200 for (a)–(c) CMIP6 ALL, NAT, and GHG simulations and (d),(e) Had-
GEM3-A-N216 (HG3) ALL and NAT simulations, respectively. The thick solid lines indicate results from all simulations and 
thin and dashed lines represent subsampled results with stronger convection (SC) and weaker convection (WC) conditions, 
respectively. Black solid and dashed vertical lines represent the 2019 and 1999 observed values from NCEP1. (f) RR (mark) 
and its 5%–95% confidence intervals (error bars) obtained (left) between PSC and PWC (RRSC/WC) and (right) between PALL and PNAT 
(RRALL/NAT) for CMIP6 and HG3 models. Solid and dashed error bars indicate RR results for the 2019 and 1999 observed thresh-
olds, respectively. Refer to Table 1 for corresponding RR values and Fig. ES2 for corresponding return periods.
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Concluding remarks.
Our multimodel event attribution analysis indicates no discernible anthropogenic 
influences on the September 2019 extreme steering winds over the East China Sea re-
gion, which were closely associated with the record high number of typhoons affecting 
South Korea. It is rather found that the unusually strong September monsoon over 
northwest India could well have contributed to the extreme circulation patterns, in-
creasing the probability of a 2019-like event by at least 3 times in CMIP6 models and 
about 1.5 times in the HadGEM3-A-N216 ensemble. Further investigation is warranted 
to better understand details of how anomalous northwestern Indian convection in-
duces extreme circulation patterns over Northeast Asia (e.g., Kim et al. 2019, 2020) 
and also to quantify human and natural contribution to the intensified Indian mon-
soon (cf. Menon et al. 2013; Lee et al. 2018). Finally, it should be noted that linking 
the extreme circulation pattern to actual TCs affecting South Korea remains difficult 
because of no consideration of TC genesis, large uncertainty in TC track data during 
pre-satellite period (e.g., Moon et al. 2019), and a lack of objective determination of TCs 
affecting South Korea.
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The 2019 Northwest Pacific marine heatwave was 
amplified by natural, multidecadal shoaling of the 
ocean mixed layer; anthropogenic mixed layer shoal-
ing will amplify marine heatwaves in the future.

I n boreal summer 2019, the northeast Pacific Ocean (NE-
Pac) experienced a resurgence of extremely warm upper 
ocean temperatures (Fig. 1a). The strength and pattern 

of the sea surface temperature anomalies (SSTAs) earned 
this event the moniker “Blob 2.0” (Amaya et al. 2020; here-
after A2020), a reference to the original warm “Blob” that 
initiated a multi-year marine heatwave (MHW) that devas-
tated regional ecosystems over 2014–16 (Bond et al. 2015; 
Cavole et al. 2016; Amaya et al. 2016; Piatt et al. 2020). In 
particular, the intraseasonal persistence of the 2019 Blob 
2.0 generated similar widespread concern among fishery 
and wildlife managers for sensitive marine ecosystems 
along the west coast of North America (NOAA 2019).

Blob 2.0 primarily resulted from a record minimum 
mixed layer depth (MLD; Fig. 1a shading), which formed 
due to weaker than normal wind speeds and strong sur-
face heating from reduced cloud cover (A2020). Equation 
(1) illustrates how shallow mixed layer depths affect 
mixed layer temperature changes, ∂T′m/∂t, when consider-
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Fig. 1. (a) JJA 2019 MLDAs (m; shading) and SSTAs (°C; contours, positive solid and negative dashed) from Argo and GODAS, 
respectively. Contour interval is 0.5°C starting at 0.5°C (solid black). (b) MLDAs for five observational analyses (Table 1) av-
eraged in the black box (i.e., 34°–47°N, 213°–232°W) shown in each map. Circles mark 2019 values. Shading for SODA3 and 
ORAS5 represents the full range (min-to-max) across respective ensembles. (c),(d) Observed JJA MLD trends (m decade–1; 
shading) from 1980 to 2015 averaged across two groupings: (c) GODAS, ORAS5, and Argo and (d) ORAS4 and SODA3. (e),(f) 
Simulated JJA MLD trend (m decade–1; shading) from 1980 to 2015 in ensemble means of CESM1-LE and CMIP5. (g),(h) As in 
(e),(f), but for the period 2016–99. All trends based on linear least squares fit. Stippling represents 95% significance for a 
Mann-Kendall test.

ing only local heat sources and sinks (i.e., neglecting advection) and separating each 
budget term into mean and perturbation components:
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where Q is the net surface heat flux into the ocean, h is the MLD, ρ is seawater density, 
and cp is the specific heat of seawater. Primes denote time anomalies and overbars 
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represent time mean values. For the full derivation see Alexander and Penland (1996). 
For Blob 2.0, strong downward Q anomalies (i.e., positive Q′) led to excess heat being 
distributed over a thin climatological mixed layer, since h̄ is small in summer (term 
I). More importantly, anomalous MLD shoaling (i.e., negative h′) contributed to upper 
ocean warming through term II (A2020).

As discussed in A2020, the 2019 MLD anomalies (MLDAs) superpose on a MLD 
shoaling trend from 1980 to the present, which they suggest may indicate a role for 
anthropogenic forcing. Upper ocean warming in response to future climate change is 
expected to reduce mixing and shoal the mixed layer (Capotondi et al. 2012; Alexander 
et al. 2018). A long-term trend in the mean MLD would have significant implications 
for SSTAs since, according to Eq. (1), decreasing the mean MLD (h̄) results in a stron-
ger temperature response for the same heat flux and MLD anomalies. Therefore, if the 
observed MLD shoaling first reported by A2020 is robust across different datasets and 
consistent with the projected response to anthropogenic climate change, then Blob 2.0 
may have been exacerbated by anthropogenic forcing. Here, we investigate the pres-
ence of NEPac MLD trends in a suite of observational analyses. We then compare these 
results to coupled model simulations to assess the potential influence of anthropo-
genic climate change on NEPac MLD trends, and by extension, on the likelihood and 
intensity of the 2019 MHW.

Data and methods.
For observed MLD, we use monthly mean data from the NOAA Global Ocean Data As-
similation System (GODAS; Behringer and Xue 2004), ECMWF Ocean Reanalysis Sys-
tem 4 (ORAS4; Balmaseda et al. 2013) and 5 (ORAS5; Zuo et al. 2019), Simple Ocean 
Data Assimilation version 3 (SODA3; Carton et al. 2018), and gridded Argo profiles 
(Hosoda et al. 2008). See Table 1 for more details.

We estimate the externally forced MLD trends using the Community Earth System 
Model version 1 Large Ensemble (CESM1-LE; Kay et al. 2015). Additionally, we use 13 
models from phase 5 of the Coupled Model Intercomparison Project (CMIP5; Taylor 
et al. 2012) with the same radiative forcing protocol. Model details are provided in 
Table 1 and also Table ES1 in the supplemental material. We use the ensemble mean of 
each model ensemble (CESM1-LE and CMIP5) as two estimates of the forced response.

To compare trends across datasets, we calculate MLD in each observational analy-
sis and coupled model simulation as the interpolated depth at which potential density 
first exceeds 0.125 kg m–3 greater than the surface value (Suga et al. 2004). For data-
sets that do not include potential density, we calculate it from monthly mean potential 
temperature and salinity profiles. To compare to Blob 2.0, we only analyze MLD val-
ues averaged over boreal summer [June–August (JJA)]. Unless otherwise specified, all 
anomalies are relative to the period 2001–15, which is the longest overlapping period 
for the data used in this study.

Our results are not sensitive to the choice of MLD definition. Additionally, while it is 
preferred to calculate long-term MLD trends based on daily mean values, many of the 
datasets only provided monthly means (e.g., ORAS4, ORAS5, CESM1-LE, and CMIP5). 
However, we do not expect our results or conclusions to be influenced by this choice, 
since the temperature and density gradients are very strong at the base of the mixed 
layer in summer. Finally, we define the term “NEPac” to represent the region bounded 
by 34°–47°N, 213°–232°W (black box, Fig. 1), the same area used in A2020.

Results.
MLD trends in observations. We begin by assessing MLD trends in observations. Interan-
nual MLD variability in the NEPac is quite consistent across the various observational 
analyses (Fig. 1b, Table 1), particularly during the Argo era (2001–present). However, 
earlier in the instrumental record, two groupings emerge, with GODAS and ORAS5 
exhibiting a more pronounced shoaling trend than ORAS4 and SODA3. While the 
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magnitude of the observed MLD shoaling varies among datasets, the average NEPac 
trend (−0.7 m decade−1) is significant at the 95% confidence level (Table 1). Given that 
the climatological JJA MLD in the NEPac region is ~18 m, such a trend would correspond 
~15% decrease in the mean MLD from 1980 to 2015.

Creating two groupings of observational analyses (GODAS, ORAS5, and Argo vs 
ORAS4 and SODA3), we produce two observational MLD trend maps from 1980 to 2015. 
The average of GODAS, ORAS5, and Argo shows widespread MLD shoaling trends with 
two main centers of action, one around the Aleutian Islands and one off the California 
coast (Figs. 1c,d; see also Fig. ES1). While the average of ORAS4 and SODA3 shows 
weaker MLD trends overall, the two centers of action are also generally present in these 
data (Fig. ES1). Additionally, the close spatial correspondence of the 2019 MLDAs near 
California (Fig. 1a, shading) with some of the observed trends (Fig. 1c and Fig. ES1) 
suggests that this extreme event was likely exacerbated by these longer-term features.

MLD trends in climate models. Are these and other North Pacific MLD trends attributable 
to anthropogenic forcing? To address this question, we show maps of JJA MLD trends 
from 1980 to 2015 for the ensemble means of CESM1-LE and CMIP5 to estimate the forced 
component (Figs. 1e,f). There is some spatial correspondence with the observational 
analyses (Fig. 1c and Fig. ES1), especially with CMIP5. The spatial similarities between 
the historical trends in observations and the forced trends in models are even more 
apparent when the latter are extended into the future (2016–99; Figs. 1g,h). For the 
NEPac, the JJA MLD time series show significant forced trends in both the CESM1-LE 

Datasets Data availability Ensemble details
NEPac MLD trends 

(m decade–1)

Observations Trend for 1980–2015

GODAS* 1980–2019 –1.3

ORAS5* 1979–2018
5 members, different initial 
conditions

–1.2 (–1.2 to –1.2)

Argo 2001–19 –2.2

ORAS4* 1958–2017 –0.3

SODA3.X

SODA3.3.2: 1980–2018
SODA3.4.2: 1980–2018
SODA3.11.2: 1980–2015
SODA3.12.2: 1980–2017

4 members, different atmo-
spheric reanalysis forcing

–0.2 (−0.6 to 0.6)

Obs. avg. (excluding Argo) –0.7

Models
Trend for 1980–2015/project-
ed trend for 2016–2099

CESM1-LE 1920–2100
40 members, historical forc-
ing until 2005, RCP8.5 after

–0.0 (−0.6 to 0.7)/–0.6 
(−0.7 to –0.3)

CMIP5* 1900–2099

13 models, one member each 
(see Table ES1 for model 
details), historical forcing 
until 2005, RCP8.5 after

–0.2 (−0.6 to 0.5)/–0.4 
(−1.0 to –0.1)

Forced model avg. –0.1/–0.5

Table 1. Observational and coupled model data used in this study and their JJA-averaged MLD trends in the 
NEPac (black box; Fig. 1a). For ensemble datasets, the mean MLD trend is reported with minimum and max-
imum ensemble trends in parentheses. For Argo data, the trend is reported for 2001–19. Significant trends 
are bolded and are based on a 95% Mann-Kendall test. Datasets marked with an asterisk (*) did not provide 
potential density as a variable. Therefore, the potential density used to calculate MLD for these datasets is 
based on their respective temperature and salinity fields.
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(−0.6 m decade−1) and CMIP5 (−0.4 m decade−1) during 2016–99, which amounts to ~4 
m MLD shoaling by the end of the twenty-first century (Fig. 2a). However, many of the 
observed NEPac trend estimates are larger than the CESM1-LE and CMIP5 ensemble 
mean trends from 1980 to 2015 (Table 1), suggesting that the observations contain sig-
nificant contributions from internal variability.

Climate change impacts on future MLD extremes. How extreme were the 2019 MLDAs 
relative to the full range of internal variations in present and future climates? Diagnosing 
the 2019 event in this context will help us understand how future MLDAs contribute 
to future MHWs.

Given that the magnitude of interannual variability of NEPac JJA MLD in CESM1-LE 
compares well with observations (standard deviation of 2.1 vs 2.3 m, respectively, 
based on detrended data during 1950–2018), this model ensemble can be used to con-
textualize the observations. Compared to the CESM1-LE probability distribution func-
tion (PDF) for a 30-yr period centered on 2019, the observed 2019 NEPac MLDA was an 
extremely rare event, falling at the far negative tail of the model distribution (Fig. 2b). 
When viewed against the projected decrease in the model’s MLD by 2100, the observed 
2019 anomalies become less extreme, rising from percentile ranks of 0.06% and 0.08% 
to 7.6% and 10.4% for GODAS and Argo, respectively.

Climate change impacts of MLD on future SST extremes. Long-term shoaling of the mean 
MLD also has important implications for the magnitude of future SST extremes. We 
illustrate this by calculating Eq. (1) terms I and II in CESM1-LE for the NEPac box. In 
this region, the CESM1-LE JJA mean net surface heat flux (Q̄) increases by ~10 W m–2 by 
the end of the century, while the mean MLD (h̄) decreases by ~4 m (Fig. 3a). As a result, 
the denominators of terms I and II decrease, while the numerator of term II increases, 
suggesting that both term I and II will contribute to more mixed layer warming for the 
same heat flux anomaly (Q′) and MLDA (h′) in the future.

By fixing Q′ and h′ at observed JJA 2019 values (Q′ = 7.8 W m–2 and h′ = −6.2 m 
in NEPac using ERA5 and GODAS, respectively) and calculating terms I and II in a 
30-yr sliding window, we see that the superposition of increasing Q̄ and decreasing 
h̄ leads to term II dominating over term I (Fig. 3b). In particular, for the same Q′ and 
h′, term II is projected to generate SSTAs that are ~4.5°C warmer in 2071–2100 than 
in 2001–30. Term III, which represents the nonlinear interaction of Q′ and h′, is neg-
ligible. Therefore, in the absence of compensating damping from processes such as 

Fig. 2. (a) JJA MLDAs averaged in NEPac (black box, Fig. 1a) for two observational groupings (red/orange) and ensemble means 
of CESM1-LE (black) and CMIP5 (blue). Shading for each time series represents the full range (min-to-max) across respective 
ensembles. (b) Probability distributions of JJA ensemble mean CESM1-LE MLDAs averaged in NEPac during the “present” 
(blue; 2005–34) and “future” (orange; 2070–99). Vertical black lines mark JJA 2019 MLDA values from GODAS (solid) and Argo 
(dashed) data averaged in same region.
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entrainment and ocean–atmosphere feedbacks, extreme MLDAs like that in 2019 will 
contribute to larger and/or more frequent SST extremes in the future.

Discussion.
We have investigated the influence of climate change on North Pacific MLD trends 
and, by extension, the likelihood and intensity of the summer 2019 MHW. We showed 
that some parts of the NEPac have likely experienced long-term MLD shoaling since 
1980 (i.e., within the black box in Fig. 1), but significant observational uncertainty 
regarding the strength of these trends remains (Fig. ES1 and Table 1). Even so, the 2019 
MLDAs, which were an important driver of Blob 2.0 (A2020), were likely exacerbated 
by these multidecadal trends. Consequently, the marine ecosystem impacts generated 
by this MHW (PFMC 2020; Lambert 2019) may have also been intensified by the shoal-
ing of the ocean mixed layer.

The anthropogenic contribution to these observed MLD trends is less clear. There 
is model uncertainty in the strength and pattern of the estimated forced NEPac trends 
from 1980–2015 (Figs. 1e,f, Tables 1 and ES1). Additionally, the fact that the observed 
MLD trend greatly exceeds the forced trends estimated by the model ensemble means 
(Table 1) suggests that internal variability makes a strong contribution to the observed 
trend. However, given the close spatial correspondence between Fig. 1c and the forced 
trends from 2016 to 2099, it is possible that the models underestimate the strength of 
the forced response in recent decades. Regardless, it is clear that large internal climate 
variability complicates the detectability of the forced MLD signal in observations.

Our analysis supports previous findings that pronounced changes in mean MLD 
may have significant implications for the frequency and strength of MHWs in the fu-
ture (Alexander et al. 2018). This causal link arises primarily through an enhanced 
role for the MLDA effect on SSTA (Fig. 3b, term II), which will be further exacerbat-
ed as extreme negative MLDAs become more common in response to climate change 
(Fig. 2b). This process is likely to be more important in summer when mean MLDs are 
shallowest (Alexander and Penland 1996; Alexander et al. 2000). A shallower MLD 
and associated smaller heat capacity could further intensify SST warming in summer, 
contributing to thermal stress on marine organisms. More research is needed into 
mechanisms that may offset the projected effects of a shallower MLD on future MHWs. 
Finally, our results emphasize the importance of focusing on the underlying dynamics 

Fig. 3. (a) CESM1-LE JJA mean net surface heat flux (Q̄ ; left axis; blue) and mean MLD (h̄ ; right axis; red) in the NEPac (black 
box, Fig. 1). (b) Contributions of Eq. (1) terms I (purple) and II (green) to anomalous mixed layer temperature changes (∂T′m). 
Each term in (b) is calculated using the time-evolving means in (a) and a fixed net surface heat flux anomaly (Q′) and MLDA (h′) 
set to observed JJA 2019 values (see text). Terms I and II are calculated in 30-yr sliding windows starting in 2001; years along 
the x axis denote the end of the window. For example, term I in 2060 represents fixed Q′ divided by the projected CESM1-LE h̄ 
for the period 2031–60. CESM1-LE data are subject to a 10-yr running mean prior to calculating changes.
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that modulate the mixed layer heat budget when assessing the influence of climate 
change on future MHWs, which complements recent studies focusing primarily on the 
influence of climate change on the SST itself (Frölicher et al. 2018; Jacox et al. 2018; 
Walsh et al. 2018).
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Anthropogenic forcing reduced the probability 
of rainfall amount in the extended rainy winter 
of 2018/19 over the middle and lower reaches of 
the Yangtze River, China, by ~19%, but exerted 
no influence on the excessive rainy days, based on 
HadGEM3-GA6-N216 ensembles. Instead the natural 
variability played a large and important role in this 
event.

D uring December 2018 to February 2019, the mid-
dle and lower reaches of the Yangtze River Valley 
(MLYRV) experienced an unprecedentedly extend-

ed rainy extreme weather event. This extreme event had 
more than 50 rainy days over the MLYRV in 2018/19 win-
ter, resulting in a dramatic decrease in sunshine hours. 
According to the records from the China Meteorological 
Administration (CMA), daily-mean sunshine duration was 
less than 2 h during this event in many stations, reaching 
the lowest record in historical observations since 1961. 
This has led to severe impacts on natural systems, such 
as reduced agriculture productivity and increased load 
on power system supplies and transportations, and on 
human health (Liu et al. 2020). As such, this extended 
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rainy event was defined as one of the top 10 extreme weather and climate events over 
China in 2019 by the CMA (http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/202001/
t20200103_543940.html).

Before this extreme event occurred (about September 2018), the tropical Pacific en-
tered into a weak El Niño state (see Fig. ES1a in the online supplemental material), 
which favors a westward shift of the western Pacific subtropical high (WPSH) and ex-
cessive rainfall over the MLYRV (Wang et al. 2000; Wu et al. 2003; Zhou and Wu 2010). 
Anthropogenic warming since preindustrial times has been found to have affected 
extreme rainfall over East Asia, intensifying particularly short-term extreme rainfall 
(Burke et al. 2017; Zhang et al. 2007, 2017; Min et al. 2011; Westra et al. 2014; Dong et al. 
2020). The aim of this study is to investigate whether anthropogenic warming changed 
the likelihood of the extended rainy winter of 2018/19.

Data and methods.
Daily rainfall observations for the period of 1961–2019 from ~2,400 stations are ob-
tained from the CMA, and interpolated into 0.5° × 0.5° grid cells with the thin plate 
spline method (Shen et al. 2010). To analyze circulation fields associated with this 
event, monthly wind and geopotential height datasets from the NCEP–NCAR reanaly-
sis (Kalnay et al. 1996) are used.

Simulations at 0.56° × 0.83° horizontal resolution with 85 vertical levels from the Met 
Office HadGEM3-GA6-N216 model (Ciavarella et al. 2018) are employed to assess anthro-
pogenic influences on the probability of this extreme event. These simulations are driv-
en by observed monthly sea surface temperature (SST) and sea ice concentration (SIC) 
from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (Rayner et al. 2003) 
with both natural and anthropogenic forcings (HistoricalExt), and with natural forcing 
only for which anthropogenic contributions to the observed SST and SIC are removed 
(HistoricalNatExt). More details about the forcings used can be found in Christidis et al. 
(2013). Each experiment comprises an ensemble of 15 initial-condition simulation mem-
bers for the period of 1960–2013 from which 525 members are extended up to 2019. This 
study particularly uses the 2018/19 winter simulations. Extreme rainfall events at local 
to regional spatial scales can be influenced greatly by internal climate variability, and 
the large ensemble of initial-condition simulations helps obtain reliable attribution re-
sults by providing a more adequate sampling of internal variability (Li et al. 2019).

The 2018/19 winter rainfall event is concentrated in 27°–32°N, 112°–122°E (Fig. 1a) 
and so this region is the focus of the analysis. Both the number of days with rain-
fall as well as the cumulative rainfall amount are considered. A rainy day is a day 
with more than 1 mm of precipitation, including rain and snow. The total number of 
rainy days and accumulated rainfall amount are computed for each winter (December 
to February) during 1961/62–2018/19, and are expressed as anomalies relative to the 
1961/62–2010/11 climatology for both observations and simulations.

To test the reliability of model simulations, a Kolmogorov–Smirnoff (K–S) test com-
paring the distributions of observed and simulated anomalies of the number of rainy 

Fig. 1. (facing page) (a),(b) Observed rainy days anomaly and rainfall amount anomaly 
in 2018/19 winter relative to the 1961/62–2010/11 climatology. (c),(d) Observed region-
al-mean rainy day anomaly and rainfall amount anomaly over the MLYRV in each winter 
for 1961/62–2018/19. (e),(f) Return periods and associated 95% confidence intervals for 
anomalies of regional-mean rainy days and rainfall amount, where the red dot denotes 
the value in 2018/19 winter. (g) 2018/19 winter 850-hPa moisture flux anomaly (arrows; 
g m−1 s−1 Pa−1) and convergence (shaded; 10−7 g m−2 s-1 Pa−1) 5,860 gpm contours of 500-hPa 
height for 2018/19 winter (red line) and climatology (blue line). (h) 500-hPa height anom-
alies in 2018/19 winter (contours; gpm). The regression of 500-hPa height anomalies onto 
the standardized rainy day number anomaly for 1961/62–2010/11 is also shown (shaded; 
gpm), where the dotted area is the region exceeding the 95% confidence level.
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days and rainfall amount is used. As both the number of rainy day and rainfall amount 
anomaly follow closely a normal distribution according to the F test for variances and 
K–S test (Figs. ES1d,e), Gaussian fits are used to quantify the occurrence probabilities 
and return periods of the number of rainy days and rainfall amount for 2018/19 in both 
observations and simulations with and without anthropogenic influence. Then, the 
risk ratio comparing the occurrence probability of the extended rainy event is comput-
ed, and the corresponding 5%–95% confidence interval are estimated via a bootstrap-
ping procedure for 1,000 times, in which 525 samples are drawn from the 525 ensemble 
members with each time replacement.

Results.
The observations show significant positive anomalies in rainy days (Fig. 1a) and 
rainfall amount (Fig. 1b) over the MLYRV during 2018/19 winter. The regional-mean 
rainy days anomaly is more than 19 days relative to the 1961/62–2010/11 climatology, 
approaching 1.5 times the long-term mean value and breaking the historical record 
since 1961/62 (Fig. 1c). The regional-mean rainfall amount anomaly observed over the 
MLYRV exceeds 140 mm (Fig. 1b), which is the third wettest event during the whole 
period (Fig. 1d). In terms of return periods, rainy days and rainfall amount anomalies 
are greater than 100 (Fig. 1e) and 20 years (Fig. 1f) respectively, indicating the unusual 
rareness of an extended rainy event like the 2018/19 winter.

Although this extreme rainfall event occurred during a weak El Niño event, it is 
primarily driven by a persistent northwestward shift of the WPSH, as evidenced by 
the geopotential height contours of 5,860 gpm at 500 hPa extending to southern Chi-
na (~22°N), about 5°–8°N of its climatological mean position (Fig. 1g). The associated 
low-level southwesterly winds over the northwest side of WPSH carry warm moist air 
that converges over the MLYRV, producing more-than-normal rainy days and rain-
fall amount in this region. Correspondingly, the positive 500-hPa height anomalies 
over the northwestern Pacific are obvious in 2018/19 winter, as supported by the re-
gional-mean (20°–40°N, 120°–150°E) height anomaly that is as high as +24 gpm 
(Fig. 1h). The magnitude of the 500-hPa height anomalies over the northwestern Pacif-
ic in 2018/19 winter is about 2 times larger than that in regression pattern for 1961/62–
2010/11, consistent with the record-breaking rainy day anomaly in this winter (Fig. 1a).

The HadGEM3-A-N216 model simulations for 1961/62–2012/13 reasonably capture 
the observed rainy day and rainfall amount variabilities (Figs. 2a,b). The distributions 
of rainy day and rainfall amount anomalies are comparable in model simulations and 
observations. Further, the observations fall within the range of model simulations. 
A K-S test reveals that the distributions of simulated and observed anomalies during 
1961/62–2012/13 are statistically indistinguishable at 95% confidence level (p value = 
0.39 for rainy day; p value = 0.31 for rainfall amount). Overall, the model provides rea-
sonably well simulations of rainy day and rainfall amount over the MLYR that enable 
a reliable attribution analysis.

Although distributions of rainy day anomalies exhibit a small drying shift from 
HistoricalNatExt to HistoricalExt, they are very close in the upper tails where the num-
ber of rainy days in 2018/19 winter is observed. In particular, 7 of 525 ensemble mem-
bers exceeds the observed anomaly of 19 days in both HistoricalNatExt and Historic-
alExt. Correspondingly, the occurrence probability is 0.12 for both HistoricalNatExt 
(0.001–0.025) and HistoricalExt (0.002–0.024), with a risk ratio of 1.00 (0.90–1.18). The 
associated return period is estimated to be about 86 years (56–131 years; 5th–95th per-
centiles) in both ensembles, indicating that the anthropogenic forcing has relatively 
little influence on the rainy day anomaly (Fig. 2e), which might be a manifestation of 
the large local-to-regional internal variability.

Although the observed rainfall anomaly of 145 mm is slightly more likely without 
anthropogenic warming, the changed distribution between HistoricalNatExt and His-
toricalExt is similar to that for rainy day anomalies (Fig. 2d). Correspondingly, the an-



S71JANUARY 2021AMERICAN METEOROLOGICAL SOCIETY |

thropogenic forcing is estimated to have decreased the occurrence probability from 
0.16 (0.09–0.19) in HistoricalNatExt to 0.13 (0.07–0.18) in HistoricalExt, with a risk ratio 
of 0.81 (0.75–0.99). Compared to observations, the return period (~10 years) in rainfall 
amount anomalies is significantly decreased in model simulations (Fig. 1f vs Fig. 2f). 
The obviously different return period for rainfall amount anomaly between the sim-
ulations and observations is associated with the overestimated rainfall interannual 
variability in simulations (Figs. ES1d,e). Moreover, the circulation pattern anomalies 

Fig. 2. (a),(b) Time series of observed (blue line) and simulated ensemble mean (red line) of rainy day anomaly and rainfall 
amount anomaly over the MLYRV in each winter for 1961/62–2012/13, with 15-member spread shown as light pink shading. 
(c),(d) Probability density function, using Gaussian fits, of rainy days anomaly and rainfall amount anomaly in 2018/19 winter 
with 525-member HistoricalExt (red line) and HistoricalNatExt (blue line) simulations. The dashed line denotes the observed 
2018/19 winter. (e),(f) As in (c),(d), but for return periods.
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are consistent regardless of the presence of anthropogenic warming (Figs. ES1b,c). 
These different lines of evidence suggest that the natural variability played a large 
and important role in the extended rainy event in 2018/19 winter over MLYRV.

Conclusions and discussion.
In 2018/19 winter, an unprecedented extended rainy event occurred over the middle 
and lower reaches of the Yangtze River Valley, with more than 50 rainy days break-
ing the historical record since 1961/62. This event was primarily driven by persistent 
northwestward shift of the WPSH, where the associated low-level southwesterly winds 
could carry warm moist air that converges over the region. By analyzing two large 
ensemble simulations with and without the influence of anthropogenic warming from 
the HadGEM3-A-N216 model, we found that anthropogenic forcing has reduced the 
probability of rainfall amount in this event by ~19%, but exerted no influence on the 
excessive rainy days. Instead the natural variability played a large and important role 
in this event.

Generally, the extratropical land precipitation at monthly to seasonal time scales 
is dominated by atmospheric internal processes with external forcings (SST, SIC, etc.) 
played a secondary role (Hu et al. 2020). The shift of the PDF in 2018/19 winter, relative 
to the mean climatology, to wetter conditions for both rainy day and rainfall amount 
anomalies in both ensembles (Fig. 2c vs Fig. ES1e; Fig. 2d vs Fig. ES1d) suggests that 
this event is driven by the external forcings. This conclusion is consistent with the 
study of Liu et al. (2020), which further indicates that tropical Atlantic warming, inter-
decadal variation, and central tropical Pacific warming are three major factors leading 
to this extended rainy winter. Also, a drying shift of the probability density functions 
for anomalies of rainfall amount in HistoricalExt compared HistoricalNatExt suggests 
the anthropogenic signal is detected to some extent, and thus more work is necessary 
to separate the human influences on this shift (Power et al. 2013; Balan Sarojini et al. 
2016).

Additionally, our conclusions are only based on daily observed rainfall from CMA 
and ensembles from a single atmospheric model forced by observed SST or SIC with 
and without anthropogenic warming. Multiple observational datasets (Hegerl et al. 
2015) and a comparison with estimates from fully coupled models (Sun et al. 2014; 
Massey et al. 2015; Ren et al. 2020) are needed to test our results, as ocean–atmosphere 
interaction is important for East Asian climate (Wang et al. 2005).
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The record-low January–February 2019 sunshine in 
the Middle-Lower Yangtze Plain was favored by a 
circulation pattern, while anthropogenic aerosols 
and greenhouse gases increased their probability in 
recent decades by 3.1 and 1.3 times, respectively.

In January–February 2019, the Middle-Lower Yangtze 
Plain, accounting for ~1/8 of China’s territorial areas, 
endured the shortest sunshine duration (SD) since 1961 

(Figs. 1a–b and Fig. ES1a). The regional average of daily 
SD (1.6 h) was approximately 57% shorter than the 1961–
90 climatology (3.7 h). Due to the continuous rainy and 
low sunshine in early 2019, the acreage and yield per unit 
of early rice were reported to decrease by 341.3 thousand 
hectares and 64.8 kg ha−1 compared with 2018, respective-
ly (National Bureau of Statistics of China; www.stats.gov.
cn/tjsj/sjjd/201908/t20190826_1693488.html).



S76 JANUARY 2021|

Fig. 1. (a) Spatial distribution of the CMDC stations that registered record- and near-record (since 1961) SD for January–
February 2019. (b) Time series of January–February mean SSR (in orange curve), SD (in green curve), and Z500 (in purple curve) 
anomalies averaged over the Middle-Lower Yangtze Plain (black box in Fig. 1a) from 1961 to 2019. The blue curve denotes the 
mean TCC from MODIS during the period of 2000–19. The pentagram represents the records broken in 2019. (c) Return period 
(in red curve) and 95% confidence intervals (in red dotted lines) for the observed regional mean SSR (red “+”) based on the 
GPD fit. The black line represents the observed SSR for January–February 2019. (d) Spatial distribution of Z500 anomalies 
(contours) and averaged TCC (shading) in January–February 2019. Dashed contours represent negative anomalies. Color-filled 
circles indicate the correlations between the detrended regional mean SSR and gridded Z500 anomalies (p < 0.01).

Sunshine is largely affected by cloud cover, which is regulated by regional atmo-
spheric circulation (Christidis et al. 2016). At the end of 2018 and in early 2019, the 
equatorial Pacific entered an El Niño warm phase (index >0.5, Fig. ES1d). Under this 
phase, the western Pacific subtropical high (WPSH) shifted northward and westward, 
then remained stable to form an anomalous anticyclonic circulation over and east 
of the Sea of Japan. The southwest airflow from anticyclonic circulation transported 
moisture from the northwest Pacific and the South China Sea to the Middle-Lower 
Yangtze Plain, resulting in continuous cloudy and rainy weather and thus the per-
sistent low sunshine there (Fig. 1d and Fig. ES1c) (Rayner et al. 2003; Wu et al. 2009). 
Therefore, the contribution of the atmospheric circulation anomaly to the likelihood of 
such a short SD event is first investigated in this study.

With the rapid urbanization and industrial development in China, anthropogenic 
aerosols emissions are increasing in recent decades (Wang and Chen 2016). The direct 
and indirect radiative effects associated with this increase are most likely to reduce 
the SD (Kim and Ramanathan 2008; Sanchez‐Romero et al. 2014; Christidis et al. 2016; 
He and Wang 2020). The direct effect means that solar radiation is directly scattered or 
absorbed by aerosols and the indirect effect refers to the effect of aerosols on solar ra-
diation by altering properties of clouds (Boers et al. 2017). In addition, global warming 
due to greenhouse gas (GHG) emission is likely responsible for intensifying anticyclonic 
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circulation in recent decades by tropical oceanic warming (Zhou et al. 2009; He et al. 
2015; Takahashi et al. 2019; Wang et al. 2020). Therefore, the roles of anthropogenic 
forcings including anthropogenic aerosols and GHGs in such a short SD event are also 
quantified in this study.

This study tries to explore three questions: 1) How extreme is low sunshine over the 
Middle-Lower Yangtze Plain in January–February 2019 in a historical context? 2) What 
are the contributions of the anomalous anticyclonic circulation over the northwest Pa-
cific, anthropogenic aerosols, and GHGs to the probability of the event? 3) What are 
the roles of anthropogenic aerosols and GHGs for the development of the anomalous 
anticyclonic circulation?

Data and methods.
Daily SD observation data from 1961 to 2019 at ~2,000 meteorological stations in Chi-
na (Fig. 1a) were obtained from the China Meteorological Data Service Center (CMDC; 
http://data.cma.cn/en). These data were subjected to quality control to eliminate spuri-
ous shifts in the time series (Zhou et al. 2018) and have complete temporal continuity 
at all the stations. A total of 744 stations in the study region (black box in Fig. 1a) were 
included in this study. Since CMIP6 does not provide SD data, we used surface inci-
dent solar radiation (SSR) as a proxy of SD. The SSR observation dataset was from He 
et al. (2018). The detrended January–February mean SSR has a strong correlation (R = 
0.98, p < 0.01) with the detrended SD from 1961 to 2019 in the study region (Fig. ES1b).

The monthly geopotential height at 500 hPa (Z500) from 1961 to 2019 was down-
loaded from the JRA-55 reanalysis product (https://jra.kishou.go.jp/JRA-55/index_en.html) 
(Kobayashi et al. 2015; Harada et al. 2016). The circulation anomaly pattern in Janu-
ary–February 2019 is shown in Fig. 1d. The monthly total cloud cover (TCC) data from 
2000 to 2019 were derived from the Moderate Resolution Imaging Spectroradiometer 
(MODIS, https://modis.gsfc.nasa.gov/data/dataprod/mod08.php) (Platnick et al. 2015).

CMIP6 model outputs (https://esgf-node.llnl.gov/projects/cmip6/) (Eyring et al. 2016) 
were used to quantify the roles of internal atmospheric variability, GHG-based warm-
ing, and anthropogenic aerosols in the 2019 low sunshine event, including historical 
all-forcing (ALL), historical anthropogenic aerosol-only (AER), and historical green-
house gas–only (GHG) simulations. The AER (GHG) simulation is forced by anthro-
pogenic aerosol (well-mixed greenhouse gas) forcing only and does not include nat-
ural forcing, so the preindustrial control (PIC) simulation was used as a reference to 
quantify the impacts of anthropogenic aerosols and GHGs on this event. To ensure 
an equal weight for different CMIP6 models, the “rlilp1f1” realizations were adopted 
in this study. We selected 17 models (see Table ES1) based on two steps referring to 
the method of Zhou et al. (2020). First, 31 out of 34 models were selected by com-
paring the January–February SSR and Z500 anomalies from CMIP6 ALL runs with 
those from observations via a Kolmogorov–Smirnov test (h = 0, p > 0.05). Second, 17 
out of 31 models were selected with a significant negative correlation (p < 0.05) be-
tween the detrended January–February SSR and Z500 anomalies. SSR and Z500 from 
these models have similar probability density distribution to those from observation 
(Fig. ES2). The temporal correlation coefficients between area averaged SSR and Z500 
over the study region from multi-model means of the ALL runs and observations are 
0.448 (p < 0.01) and 0.447 (p < 0.01), respectively. The SSP2–4.5 runs (the combination 
of the second type of the shared socioeconomic pathways (SSP), i.e., the fossil-fueled 
development pathways, and the 4.5 forcing levels of the representative concentration 
pathways (RCP)] (O’Neill et al. 2016) were used to extend the ALL runs through 2019. 
To be consistent, all the observations and model data were converted as anomalies 
relative to the 1961–90 climatology and then integrated on the 2.5° × 2.5° grids, which 
were averaged as regional time series with area as weight.

We used the generalized Pareto distribution (GPD) (Schaller et al. 2016) to fit the 
distribution of SSR from 1961 to 2019 in order to estimate the event probabilities (P) 
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and return periods. Figures ES2c and ES2d show that GPD has a good ability to fit 
SSR and Z500 anomalies in the study region. Probability ratios (PRs) were adopted 
to assess the contributions of atmospheric circulation, anthropogenic aerosols, and 
GHGs to the event probability. To estimate the contribution of the anomalous circu-
lation to the likelihood of this event, PALL-highZ500/PALL-neutralZ500 was calculated. Here, 
PALL-highZ500 and PALL-neutralZ500 represent the probabilities under the high-correlation and 
neutral-correlation Z500 regimes from ALL simulations, respectively. A trend in Z500 
would have little impact on the calculation of the PR relative to the contribution of 
an anomalous circulation. The high-correlation Z500 regimes from CMIP6 individual 
model run denote similar circulation patterns to that from JRA-55 in January–February 
2019 (pattern correlation ≥ 0.5, p < 0.05), and the neutral-correlation Z500 regimes are 
with pattern correlations of −0.1 to 0.1 (Christidis and Stott 2015; Zhou et al. 2020). The 
spatial patterns of the multimodel mean Z500 anomalies from the ALL runs under two 
regimes are shown in Figs. ES3a and ES3b. The effect of anthropogenic aerosols (GHGs) 
on the likelihood of this event was calculated as PAER/PPIC (PGHG/PPIC), where PPIC and 
PAER (PGHG) indicate the probabilities under the PIC and AER (GHG) runs, respectively. 
The 95% confidence intervals (CIs) of the probabilities were estimated via bootstrap 
random resampling 1,000 times.

Results.
From January to February 2019, the almost entire Middle-Lower Yangtze Plain (black 
box in Fig. 1a) experienced the shortest or near-shortest mean SD since 1961 (Fig. 1a). 
New historical record lows of −2.1 h and −37.9 W m–2 were observed for SD and SSR 
anomalies relative to the 1961–90 climatology in the study region, respectively (Fig. 1b). 
The observed regional mean values of SSR anomaly were used as a threshold (i.e., 
−37.9 W m–2) to depict this extremely low SD event in the following analyses. A GPD fit 
of the observed SSR anomalies indicates that the extremely low SSR event in 2019 is a 
1-in-265-year event (95% CI: 66–∞) for the Middle-Lower Yangtze Plain (Fig. 1c), which 
may be overestimated due to small sample size.

Since the late winter 2018, the WPSH has been strong and close to mainland China. 
The Z500 anomaly in the Middle-Lower Yangtze Plain in January–February 2019 also 
registered a new record in the historical context (Fig. 1b). The mean January–February 
2019 total cloud cover data are close to 1 in the study region to explicitly demonstrate 
that it is cloudy weather affected by the WPSH (Fig. 1d). The changes in TCC are opposite 
to those in SSR and SD from 2000 to 2019 (Fig. 1b). We also found that the gridded Z500 
anomalies (associated with local anticyclonic circulation) have significantly negative 
correlations with the detrended regional mean SSR over the Middle-Lower Yangtze 
Plain (Fig. 1d), which indicates the anomalous anticyclonic circulation is probably re-
sponsible for this low sunshine event. The detrended time series of January–February 
SSR anomaly significantly correlates with that of the Z500 anomaly (R = −0.38, p < 0.01) 
(Fig. ES1b). To quantify the role of the anticyclonic circulation, we compared the proba-
bilities of this short SD event between from high- and neutral-correlation Z500 regimes 
and found the PR to be approximately 4.8 (95% CI: 1.6–9.3) (Figs. 2a,d), indicating that 
the anomalous anticyclonic circulation is a main driver of the extreme event.

To assess the influence of anthropogenic aerosols, based on the GPD fit, the best 
estimate of the probabilities of the SSR anomalies to be less than the 2019 threshold 
is 0.84% (0.24%–1.55%) and 0.27% (0.10%–0.42%) for the AER and PIC runs, respec-
tively (Fig. 2b). In other words, anthropogenic aerosols increase the probability of the 
extremely short SD in 2019 to 3.1 (95% CI: 0.9–5.9) (Fig. 2d) through their direct and 
indirect radiative effects. We further estimated the PR due to GHGs and found it to 
be 1.3 (95% CI: 1.2–5.8) (Figs. 2b,d). Stronger impact of anthropogenic aerosols on the 
likelihood of the low SSR anomalies is also reflected in the significant decline trend 
[−2.6 W m-2 (10 yr)−1, p < 0.01] of SSR from 1961 to 2019 in the AER runs, while SSR trend 
in the GHG runs is non-significant [−0.5 W m–2 (10 yr)−1, p > 0.1].
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Anthropogenic forcing has been argued to contribute to increase the likelihood 
of anomalous atmosphere circulation (Horton et al. 2015; Zhang et al. 2020; Zhou 
et al. 2020). Compared with multimodel mean Z500 anomalies under the AER and PIC 
runs, the spatial distribution of Z500 anomalies simulated by the GHG runs shows 
an enhanced anticyclonic circulation in the northwest Pacific (Fig. ES3d). The re-
gional mean Z500 anomaly in the GHG runs also displays a significant increase 
[6.7 m (10 yr)−1] from 1961 to 2019. The probabilities of Z500 anomalies to exceed the 
threshold of the observed Z500 anomaly in January–February 2019 (i.e., 56.4m) are 
0.1% (95% CI: 0.0%–0.2%), 1.3% (0.4%–2.1%), and 0.3% (0.0%–0.7%) for AER, GHG, 
and PIC runs, respectively (Fig. 2c). It is concluded that GHGs emissions might have 
increased the likelihood of the extreme Z500 anomaly to 4.6 times (95% CI: 0.6–10.6), 
while anthropogenic aerosols seem to have no significant contribution to it (PR = 0.04, 
95% CI: 0.003–2.4).

Conclusions.
The SD in January–February 2019 hit a record low in the Middle-Lower Yangtze Plain 
and its return period was estimated to 1-in-265-years based on the generalized Pareto 
distribution fit. Based on analyses of reanalysis data, the strengthening of the anoma-
lous anticyclonic circulation caused the extreme Z500 anomaly in January–February 
2019 to show the highest record since 1961. The SSR (as a proxy of SD) and Z500 anom-
alies from 1961 to 2019 show a significantly negative correlation (R = −0.38, p < 0.01). 

Fig. 2. (a) Probability density of the January–February mean SSR anomalies under high-correlation (solid purple) and neu-
tral-correlation (dashed purple) Z500 regimes in historical all-forcing (ALL, purple) runs from 1961 to 2019. (b) Probability 
density of the January–February mean SSR anomalies in the preindustrial control (PIC, gray), historical anthropogenic aerosol 
forcing-only (AER, blue), and historical GHG forcing-only (GHG, red) runs from 1961 to 2019. The black line represents the 
observed SSR for January–February 2019. (c) As in (b), but for Z500 anomalies. (d) Probability ratio (PR) of the extremely low 
SSR event in 2019 due to anticyclonic circulation (Anticyclone, purple), anthropogenic aerosols (Anthro-aerosol, blue), and 
greenhouse gases (GHGs, red). The bottom and top edges of the bar indicate the 95% confidence intervals. The black dashed 
line represents the PR equal to 1. (e) PR of the extreme Z500 anomaly in 2019 due to anthropogenic aerosols and GHGs.
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Through the analyses using CMIP6 model simulations, it is found that the anomalous 
anticyclonic circulation might have increased the probability of this low SSR event 
to be 4.8 times, making it the main driver for this extreme event. Furthermore, an-
thropogenic aerosols and greenhouse gases might have increased the probability of 
this event by a factor of 3.1 and 1.3, respectively. Besides, greenhouse gases may have 
potential impacts on the likelihood of extreme Z500 anomalies.
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The 2019 extreme wildfire in South China was 
largely related to both anthropogenic warming and 
El Nino event. They increased the weather-related 
risk of extreme wildfire by 7.2 times and 3.6 times, 
respectively.

F rom March to May 2019, the total precipitation in 
southwest China (21°–29°N, 98°–105°E) was less than 
half of the historical average and was the lowest since 

1960. Moreover, the air temperature was approximately 
1.6°C warmer than the historical average since 1960, lead-
ing to the daily maximum temperature reaching or break-
ing historical records in more than 24 cities in southwest 
China (Zeng et al. 2020). Higher temperatures and reduced 
precipitation led to severe meteorological drought, which 
notably reduced agricultural production and increased 
the forest fire risk in the region (Ding and Gao 2020). In 
particular, a lightning-caused forest fire in Muli County 
killed 31 firefighters and burned about 30 ha of forest (Li 
2019; Liu et al. 2020).

Consistent with global warming, southwest China has 
warmed, and precipitation has declined, resulting in a 
significant drought trend in this region, especially after 
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2000 (Ma et al. 2017; M. Zhang et al. 2013). An El Niño phase started in September 
2018 and lasted until June 2019. The northwestern Pacific subtropical high (NWPSH) 
strengthened, with an anomalously strong anticyclone appearing near the Philip-
pines. At same time, the Tibetan Plateau high moved eastward and caused abnormal 
downward airflows in southwest China, which blocked moisture convergence from the 
Bay of Bengal to this region. As a result, the lower precipitation with a higher tempera-
ture caused severe drought in spring 2019, thus greatly increasing the risk of forest 
fires in southwest China (Lin et al. 2015; Zhang and Zhou 2015; W. Zhang et al. 2013).

It is important to explore how anthropogenic contribution to the risk of forest fire in 
the context of changing climate (Di Virgilio et al. 2019; Dupuy et al. 2020). Here, based 
on daily meteorological observations and the fire weather index (FWI) risk model, we 
quantified the impacts of anthropogenic factors and El Niño events on the weather-re-
lated forest fire risk in southwest China.

Dataset and method.
The study region (21°–29°N, 98°–105°E) encompasses the spatial extent of extreme 
drought in the spring of 2019, and it includes Yunnan Province and the southern por-
tion of Sichuan Province (see Fig. ES1 in the online supplemental material; https://doi 
.org/10.1175/BAMS-D-20-0165.2). This region is an important forest region in Southwest 
China with complex terrain, thus making it difficult to control and fight forest fires. 
The spring (March–May) is the season with a high risk of wildfires in the study region, 
with more than half of the total number of fires in the whole year occurring during the 
spring seasons (Tian et al. 2010).

The daily observations from 1960 to 2019 at 31 meteorological stations in this region 
were obtained from the China Meteorological Data Service Center (http://data.cma.cn 
/en) (see Fig. ES1). The map of land cover in 2010 with a 1-km resolution (http://glc30 
.tianditu.com/) was used to extract the forest areas. The MODIS Thermal Anomalies and 
Fire product (MOD14A2, https://modis.gsfc.nasa.gov/) was used to obtain a time series of 
spatial fire records during the period from 2001 to 2019. This product has an 8-day tem-
poral resolution and a 1-km spatial resolution, and each pixel is a maximum composite 
of the level-2 pixel classes for the 8-day period (de Klerk 2008).

The FWI system developed based on forest regions in Canada is used to assess the 
weather conditions for the risk of forest fires (de Groot 1987), which has been found 
to be suitable for variable regions including Europe and China (Satir et al. 2016; Tian 
et al. 2014; Tian et al. 2011). The FWI system evaluates the risk of forest fires based on 
six components that provide information about fuel, moisture, the rate of fire spread, 
fuel consumption and the fire intensity. All FWI system components were calculated 
based on the measured daily air temperature (Ta), minimum relative humidity (RHmin), 
wind speed (WS), and daily total precipitation (P) (see also the online supplementary 
material).

The persistent high FWI event is defined as the maximum average FWI over three 
consecutive months in each year (hereafter FWIx3m). We selected neutral years (includ-
ing La Niña years) and El Niño years from the FWI time series of both observations and 
simulations based on the Niño-3.4 index, which reflects the average equatorial sea sur-
face temperature (SST) anomaly across the Pacific (5°N–5°S, 170°W–120°W). El Niño 
events are defined when the Niño 3.4 index exceeds 0.4°C for a period of 6 months or 
more (Bunge and Clarke 2009; Smith et al. 2008).

Taking observation as a reference, we used a quantile-matching algorithm to adjust 
the climate variables of simulations from HadGEM3-A-based attribution system (here-
after called HadGEM3-A) and CMIP6 before the attribution process (Christidis et al. 
2013; Ciavarella et al. 2018; Eyring et al. 2016). A detailed description of the adjustment 
procedure was given by Wang et al. (2010). We used the Kolmogorov–Smirnoff (K-S) 
test to select the model simulations whose all-forcings simulations have no significant 
difference with observation in probability distribution of FWI. Based on above criteria 
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(p > 0.1), there are 15 simulations from HadGEM3A during the period of 1960–2015 (56 
× 15 samples). There are 27 simulations from 9 models from CMIP6 during 2009–29 (20 
× 27 samples), assuming similar climate condition to 2019. Historical simulations with 
all-forcings (ALL; 2009–14) were combined with corresponding shared socioeconom-
ic pathway (SSP) 2–4.5 scenarios (2015–29). The corresponding natural-forcings-only 
simulations (NAT) from CMIP6 were selected from 1960 to 2014 (55 × 27 samples).

Based on the simulations mentioned above, we constructed the distribution of 
FWIx3m in ALL and NAT, and estimated the occurrence probability and return periods 
of the extreme FWIx3m greater than that in 2019 with/without anthropogenic forcings. 
Then, we compared the difference in the likelihood between ALL and NAT to deter-
mine the anthropogenic warming on the extreme FWI events.

Generalized extreme value (GEV) distribution is a flexible three-parameter distri-
bution, which can provide a conservative estimation of the probability and return pe-
riod for extreme events based on observations or model simulations (Huang et al. 2016; 
Jenkinson 1955). Here, GEV distribution was then applied to the time series of FWIx3m 
in the two scenarios with stationary climate, including neutral years with natural forc-
ings only and El Niño years with natural forcings only. The scenarios with all forcings 
are not stationary climates, and their mean is not representative of 2019. So the scaled 
GEV distributions are determined to fit the FWIx3m in scenarios with all forcings (see 
the online supplemental material). The sample size of the four scenarios are shown in 
Table ES1.

The likelihoods of FWIx3m with anomalies above that in 2019 were estimated in 
every scenario (Coles et al. 2001). Additionally, the fraction of attributable risk (FAR) 
and the corresponding probability ratio (PR) were used to estimate the effects of the 
anthropogenic warming and El Niño events (Stott et al. 2016). Sampling uncertainty 
was estimated using a Monte Carlo bootstrap procedure with replacement, and this 
procedure was run 1,000 times for all ensemble members in the individual scenarios 
(Christidis et al. 2013).

Results.
Observed extreme FWI in the spring of 2019. As shown in Fig. 1a, during spring 2019, 
the surface air temperature was 1.54°C higher (the second-highest temperature) than 
the historic value, and the precipitation was 1.19 mm day−1 less than that in the same 
period historically (the lowest since 1960). The total precipitation in this region de-
creased by 57.8% relative to the multiyear mean value for the spring season. The high 
temperature and low precipitation resulted in a severe meteorological drought in this 
region (see Fig. 1b).

We used the FWI as an indicator of forest fire risk in the study region. As shown in 
Fig. 1c, the FWI performed reasonably in estimating the forest fire risk. The correlation 
coefficient between the FWI and the density of forest fire points was 0.662 (p < 0.05; 
see Fig. 1c). Based on the records from 1960 to 2019, the regional mean March–May 
FWI was 12.31 in 2019, which was 93.5% higher than the contemporaneous multiyear 
average and the third-highest value in recorded history (see Fig. 1d). Forest fire areas in 
2019 showed a marked upturn compared with the previous years since 2014. However, 
the density of forest fire points in 2019 was not significantly higher than that in other 
years, possibly due to the government’s increased efforts to prevent forest fires in the 
region (Xiong et al. 2020; Zhai et al. 2018).

As shown in Figs. 2a and 2b, according to the fitted curve of scaled GEV distribu-
tion, the return periods of high Ta and low P in spring 2019 were 53 and 90 years, re-
spectively. The return period of the FWIx3m in this period was 51 years (see Fig. 2c). 
Based on the FWI system, we quantified the contribution of individual variables to 
extreme FWI and the method was introduced in supplementary material (Du et al. 
2019). The anomalies of Ta and P were the main driving factors of the FWIx3m in 2019, 
accounting for 36.8% and 29.7% of the trend, respectively. The contributions of RHmin 
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and WS were relatively small, accounting for only 11.5% and 5.3% of the overall effect, 
respectively (see Fig. 2d).

As shown in Fig S3, FWIx3m had a significant positive correlation with Niño 3.4 (p < 
0.05), which indicates El Niño may increase the likelihood of extreme FWIx3m. There-
fore, we selected two groups from the time series of observations: one for detrended 
El Niño years (18 samples) with only the effect of El Niño events considered and the 
other for neutral years (42 samples) with only the effects of the long-term trend of cli-
mate variables considered. As shown in Fig. 2a and 2b, the likelihood of observing 
extreme Ta and P was much higher in El Niño years than in neutral years. Therefore, 
the likelihood of 2019 FWIx3m during El Niño years was higher than that during neutral 
years (Fig. 2c). Note that the relationship between El Niño and FWIx3m is sensitive to 
the occurrence time, duration, and magnitude of El Niño (see Fig S3). Hence, we only 
estimate the average effect of all El Niño events during 1960–2019.

During neutral years, the contribution of Ta was much higher than that of P, with 
values of 54.1% and 14.6%, respectively. However, during the El Niño phase, the con-
tribution of P to the extreme FWIx3m in 2019 was 40.2%, which was higher than that 
of Ta at 25.3% (see Fig. 2d). Therefore, long-term trends in regional climate mainly in-
crease the likelihood of extreme FWI by increasing temperature, and El Niño events 
mainly increase the likelihood of extreme FWI by both reducing precipitation and 
increasing air temperature (see Table 1). Other climate variables and the interaction 
among variables have little effect on the extreme FWI (5.1%–16.3%).

Fig. 1. (a) Time series of March–May daily mean precipitation (P; blue) and air temperature 
(Ta; red) in southwest China; P and Ta are expressed as anomalies relative to the 1970–2000 
mean. (b) The anomalies of total precipitation [ATP = (Pi–P̄)/P̄ ] are calculated based on the 
total precipitation (Pi) from March to May (MAM; defined as spring) and March–May pre-
cipitation (P̄) between 1960 and 2018 in China. (c) The fire weather index and the density 
of forest fire points in spring in Southwest China were significantly correlated at the 95% 
confidence level (R = 0.663). (d) Time series of the March–May FWI (yellow) and the density 
of forest fire points in spring in southwest China (green). 
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Attribution analysis based on simulations. According to the HadGEM3A attribution 
system, we found that the likelihood of occurrence of the 2019 FWIx3m anomaly under 
all forcings was 7.21 times (95% CI: 1.64–12.93) that under natural forcings only (see 
Fig. 3a). El Niño events increased the likelihood of the 2019 FWIx3m anomaly by 3.57 
times (95% CI: 1.32–10.02). The compound anthropogenic and El Niño effects resulted 

Fig. 2. (a) Return periods for the mean air temperature (Ta) with FWIx3m based on the observations in all years, El Niño years, 
and neutral years from 1960 to 2019. The color dashed lines denote the 95% confidence intervals. The crosses are estimated 
from the empirical distributions of the observed Ta with the black dashed line denoting the observed Ta with FWIx3m in 2019. 
(b) As in (a), but for precipitation (P). (c) As in (a), but for the FWIx3m. (d) The contributions of Ta, P, daily minimum relative hu-
midity (RHmin), wind speed (WS), and the interaction among variables (En) to the likelihood of the extreme FWIx3m in 2019. The 
whiskers show the 95% confidence intervals.

Variables El Niño years (18 samples) Neutral years (42 samples)

Ta (°C)  0.270 ± 0.601  -0.076  ±  0.554

P (mm day–1)  –2.041 ± 1.76  0.712  ±  4.899

RHmin (%)  –1.263 ± 1.015  0.369  ±  2.656

Win (km h–1)  0.510 ± 1.789  –0.155  ±  2.22

FWI  0.345  ±  3.542  –0.125  ±  2.493

Table 1. Statistics (mean plus and minus standard deviation) of climate variables and FWI 
in the study area from 1960 to 2018, which are classified based on different phases of 
ENSO, including El Niño years and neutral years.
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in a 21.4-fold (95% CI: 8.1–35.9) increase in the risk of the extreme FWI experienced in 
spring 2019 (see Figs. 3b–d).

According to the CMIP6 experiments, the likelihood of the 2019 extreme FWIx3m 
under ALL was 17.39 times (95% CI: 7.42–26.83) that under NAT (see Figs. ES5a). El Niño 
years increased the likelihood of the extreme FWIx3m by 3.11 times (95% CI: 1.63–6.29) 
higher than that in neutral years. Anthropogenic warming and El Niño together result-
ed in a 37.2-fold (95% CI: 5.45–81.3) increase in the likelihood of 2019 extreme FWIx3m 
(see Figs. ES5b–d).

Note that there may be complicated relationship between anthropogenic climate 
change and El Niño events, namely, that the influence of El Niño on the extreme 
FWIx3m is partly due to the indirect effects of anthropogenic climate change. However, 
how El Niño amplitude and frequency respond to anthropogenic warming is import-
ant while has been no consensus on it (Cai et al. 2015; Collins et al. 2010; Kim et al. 
2014). The uncertainty of attribution analysis is sensitive to the synergy effect of an-
thropogenic warming with El Niño events in global scale, as well as the performance 
of FWI model and attribution system.

Fig. 3. (a) Probability density of FWIx3m estimated from HadGEM3A for the all-forcings (ALL; red) and natural-forcing-only 
(NAT; blue) simulations during 1960–2013. The best estimate is marked by the solid lines, and the thick black line is the FWIx3m 
in 2019 over the study region. (b) Scaled GEV fits 2019 (color solid lines) for FWIx3m from 1960 to 2013 based on the HadGEM3A 
simulations during El Niño years (red) and neutral years (blue) under ALL. The crosses are estimated from the empirical distri-
butions of the simulated FWIx3m with the black dashed line denoting the 2019 extreme FWIx3m. (c) As in (b), but for NAT. (d) The 
fraction of attributable risk (FAR) and corresponding probability ratios (PR) calculated using different scenario combinations. 
The bars show the interquartile range (5th–95th percentiles), and the asterisks indicate the best estimates for the fraction of 
attributable risk.



S89JANUARY 2021AMERICAN METEOROLOGICAL SOCIETY |

Conclusions.
According to the analysis of observational data, both El Niño events and human-induced 
climate change are driving factors of extreme FWI. The human-induced climate 
change exacerbate the likelihood of extreme FWI by increasing Ta, and El Niño events 
increase the likelihood of extreme FWI by both reducing P and increasing Ta. Based on 
observations, El Niño events significantly increased the risk of extreme FWI in spring 
2019 (Fig. 2c).

Furthermore, we quantify the effect of anthropogenic warming on the extreme FWI 
event. The simulation experiments of HadGEM3A (CMIP6) showed that anthropogenic 
warming increased the likelihood of the extreme FWI3xm in 2019 by 7.21 (17.39) times. 
El Niño events increased the likelihood of the extreme FWIx3m in 2019 by 3.57 (3.11) 
times. Combined, anthropogenic warming and El Niño events may result in a more than 
21-fold (21.4–37.2 times) increase in the likelihood of occurrence of an extreme FWIx3m.
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Anthropogenic influence has increased the risk of 
2019 March–June hot and dry extremes over Yunnan 
province in southwestern China by 123%–157% and 
13%–23%, respectively.

I n spring to early summer of 2019, Yunnan province 
in southwestern China was dominated by persistent-
ly and extensively hot and dry weather, especially 

during May. The mean rainfall deficit during March–June 
in 2019 was ranked first since 1961, with the hottest tem-
perature on record over Yunnan. According to the sta-
tistics reported by the Chinese government, this severe 
drought together with high temperature caused water 
scarcity that affected nearly 7 million residents and re-
sulted in crop failure over at least 1.35 × 104 km2 cropland 
(Fig. 1). More than 94% of the total area in the province 
was drought-stricken and around 2 million people faced 
drinking water shortages, with direct economic loss of 
about 6.56 billion RMB (Fig. 1f; https://www.kunming.cn/
news/c/2019-08-19/12704597.shtml).

This article is licensed under 
a Creative Commons Attribution 4.0 
license.
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Fig. 1. (a) Precipitation anomaly percentage (PAP; %) and (b) temperature (T2M) anomaly (°C) during 
March–June of 2019 relative to the 1961–2005 climatology based on CMA/NMIC station observations. 
(c),(d) Observed regional PAP and mean T2M anomaly over Yunnan for the period of 1961–2019. (e) Return 
periods and 95% confidence intervals for regional mean March–June T2M anomaly and PAP, where the red 
markers represent year 2019. (f) Drought damages in the second quarter (April–June) during 2014 to 2019 
from the Emergency Management Office of Yunnan Province. (g) 200-hPa geopotential height anomalies 
(gpm; shading) and the 587-dagpm contours (in green) during March–June of 2019, superimposed with 
corresponding vertically integrated atmospheric water vapor transport between 300 and 1000 hPa (IVT; 
vectors). The thick black contour is the climatological March–June mean 587-dagpm contour for 1961–2005.
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In recent decades, Yunnan province has suffered from frequent and severe 
droughts, especially since 2006 (Qiu 2010; Wang et al. 2015b; Ren et al. 2017). Numer-
ous research has explored the causes of drought in Yunnan and its neighboring zones, 
and the results indicate that the persistently abnormal sea surface temperature (SST) 
over the tropical Pacific and Indian Oceans (Yang et al. 2011; Feng et al. 2014; Wang 
et al. 2015a), anomalous snow cover in Northern Hemisphere (He et al. 2013) and the 
abnormality of the high-latitude Arctic Oscillation (AO; Barriopedro et al. 2012; Yang 
et al. 2012) and low-latitude Madden–Julian oscillation (MJO; Lü et al. 2012) contribute 
greatly to the Yunnan drought (Wang et al. 2015b; Ren et al. 2017). However, it is still 
unclear and even disputable as to what extent the above SST anomalies and circu-
lation patterns affect Yunnan drought because of the complexity of drought and the 
presence of strong nonlinearity. Particularly, the effect of anthropogenic forcing on 
the hot droughts (concurrent hot and dry conditions) over Yunnan remains unclear.

Therefore, in addition to assessing the contribution of anthropogenic climate 
change on Yunnan spring–early summer hot drought in 2019, we also briefly discussed 
the cause of this persistent hot drought from the perspective of anomalous circula-
tions. This case study is timely for developing appropriate strategies and plans for mit-
igating the threats of drought over Yunnan.

Data and methods.
Daily surface air temperature (T2M) and precipitation observations for the period 1961–
2019 at 839 stations are collected from China Meteorological Administration (CMA) 
National Meteorological Information Center (NMIC; available http://data.cma.cn/), and 
converted into monthly means. The precipitation anomaly percentage (PAP) is used to 
represent drought severity relative to the 1961–2005 climatology. The generalized ex-
treme value (GEV) distribution is used here to fit the observed and modeled March–June 
mean and extreme T2M and PAP distribution.

To analyze the possible causes for this concurrent hot and dry extreme event, 
monthly atmospheric circulation data during 1961–2019 at 2.5° resolution from NCEP–
NCAR reanalysis (Kalnay et al. 1996) is also used in this study.

Monthly T2M and precipitation simulations from multiple the Coupled Model Inter-
comparison Project Phase 5 (CMIP5; Taylor et al. 2012) models driven by all (ALL) and 
natural only (NAT) forcings since 1961 are used in this study (see Table ES1 in the supple-
mental information for the model list and information). Due to the data availability, only 
one pair of realizations (r1i1p1) is used to assure an equal weight for different CMIP5 mod-
els. All simulations are bilinearly regridded into 0.5° resolution and matched well with 
the observed distribution via a Kolmogorov–Smirnov test (p < 0.05; see Figs. ES1a,b). 
We further evaluate the relationship of March–June mean temperature and precipitation 
in Yunnan, and results show that the CMIP5 models capture the inverse correlation be-
tween temperature and precipitation that is evident in the observations (Fig. ES1c). To 
quantitatively assess the contributions of anthropogenic influence on 2019 extreme hot 
drought in Yunnan, the fraction of attributable risk (FAR; Stott et al. 2004) and the prob-
ability ratio (PR; Fischer and Knutti 2015) are both calculated with definition of FAR = 1 − 
PNAT/PALL and PR = PALL/PNAT. Here, PNAT denotes the probability of exceeding the 2019 high 
temperature and drought conditions in the natural-forcing scenarios and PALL denotes 
the equivalent for the all-forcings scenarios. Bootstrapping is performed 1000 times to 
estimate the FAR and PR uncertainty by resampling (Yuan et al. 2018; Wang et al. 2019). 
To identify the significance level of the difference between ALL and NAT forcings for a 
given period, p values are calculated with a right-tailed test at the 1% significance level.

In this paper, the highest (lowest) 15% of the regional mean T2M anomalies (PAP) 
on all months during March–June are considered as the extreme hot (dry) events, 
which ensure there are enough samples to examine the tails of the distribution of cli-
mate variables (Wang et al. 2019). If both extremes occur in the same year (e.g., 2019), it 
is considered as a hot drought event (Diffenbaugh et al. 2015; Chen and Sun 2017). This 
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is similar to the concurrent hot and dry extremes investigated by Wang et al. (2016), 
but at a longer time scale.

Results.
Combined with the spatial distribution of March–June mean PAP during 2019 and the 
corresponding time series of area-averaged values during 1961–2019, it is found that 
Yunnan was much drier than normal, with a widespread rainfall deficit over most of 
the province and particularly in the southern region, which received only 10% of its 
expected precipitation over that period (Fig. 1a). The area-averaged rainfall in March–
June 2019 was unprecedentedly low (Fig. 1c), and a GEV fit denotes the 2019 extreme 
drought is a 1-in-94-yr event (>11 years at 95% confidence level) in Yunnan province 
(Fig. 1e). In addition, Yunnan suffered the hottest season from spring to early summer 
since records began in 1961 (Fig. 1b). Taking Yuanjiang county in the south central 
region as an example, there were 15 days exceeding 40°C in May. The area-averaged 
T2M anomaly in March–June 2019 is ranked highest since 1961 (Fig. 1d), with a return 
period of 93 years (>52 years at 95% confidence level; Fig. 1e).

Generally, the maintenance of drought over the region is often regulated by per-
sistently abnormal SST and the resulting anomalous atmospheric conditions. These 
concurrent hot and dry extremes over Yunnan province in 2019 occurred during weak 
El Niño and in the context of a warmer Indian Ocean. During March–June in 2019, the 
low-latitude region was dominated by the high pressure anomalies, and the western Pa-
cific subtropical high (WPSH) was strengthened with its ridge line shifting northward 
and extending westward (Fig. 1g). The intensification and westward shift of the WPSH 
further weakened the southern branch trough (SBT) and enhanced the local downward 
motion over southwestern China (Yang et al. 2012; Ding and Gao 2020). The vertically 
integrated atmospheric water vapor transport fields show that there was an anomalous 
anticyclone over the Bay of Bengal and the Indochina Peninsula impeding the water 
vapor transport from the Bay of Bengal and Indian Ocean into the Yunnan region (Wang 
et al. 2015b; Ren et al. 2017; Ding and Gao 2020). Meanwhile, there were both a high 
pressure anomaly around Lake Baikal and a low pressure anomaly around Japan over 
the Eurasian midlatitudes. This circulation pattern resulted in a deepened and eastward 
East Asian trough, where the northerly cold air invaded into the eastern part of China 
rather than the southwestern region, which is unbeneficial for water vapor convergence 
in Yunnan. Therefore, the spring and early summer in Yunnan were characterized by 
high temperature and severe drought in 2019 (Wang et al. 2015b; Ren et al. 2017).

To compare the likelihood of occurrence of such extreme spring–early summer hot 
drought events over Yunnan like 2019 due to anthropogenic climate change, CMIP5 
model simulations with all and with natural only forcings are used. Results show an 
overall mean shift of T2M and PAP toward a hotter and drier condition due to the an-
thropogenic forcing by fitting GEV distributions, with FAR values of 0.43 (±0.04) and 
0.12 (±0.04) (Figs. 2a,b). Furthermore, the attribution of anthropogenic influences on 
high temperature and low rainfall extremes are also carried out as indicated in Figs. 2c 
and 2d, and results show that the extreme events are more sensitive to anthropogenic 
climate change than the monthly mean. The likelihood of the extreme hot events like 
2019 increases from 21% to 49% due to the anthropogenic climate change, with FAR 
of 0.58 (±0.03) and PR of 2.40 (±0.17). In other words, anthropogenic influence has in-
creased the risk of 2019 Yunnan persistent high temperature extremes by 123%–157%. 
The extreme low rainfall occurs more frequently in Yunnan under the influence of the 
anthropogenic climate change, with FAR of 0.15 (±0.03) and PR of 1.18 (±0.05). More-
over, the concurrent extreme high temperature and low precipitation shows a tenden-
cy to increase in ALL simulations for the study period, particularly entering into the 
twenty-first century, with a FAR value of up to 0.42 compared with NAT simulations 
for the recent decade. Between the first and last decades, CMIP5 simulated ensembles 
show shifts toward warmer and slightly drier conditions in Yunnan (Fig. 2f).
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Conclusions.
In March–June 2019, an unprecedented rainfall deficit combined with record-breaking 
high temperature hit Yunnan province in southwestern China. Observational analysis 
shows that the persistent strengthening WPSH and anomalous anticyclone over the 
Bay of Bengal–India region played a crucial role on this extreme event, via reducing 
the water vapor transportation to Yunnan and enhancing the local downward motion 
over southwestern China (Yang et al. 2012; Feng et al. 2014; Wang et al. 2015b; Ren et al. 
2017; Ding and Gao 2020). Attribution analysis based on the CMIP5 simulations with 
and without anthropogenic forcings indicates that the likelihood of extremely high 
temperature in Yunnan like the year of 2019 increased by about 140% (123%–157%) 

Fig. 2. Histogram (bars) and probability density functions (PDFs; curve) for Yunnan province in southwest China March–June (a) 
T2M anomaly and (b) PAP from CMIP5 simulations under all (ALL; in red) and natural only (NAT; in blue) forcings. (c),(d) As in (a) 
and (b), but for the high temperature and low precipitation extremes. (e) The probability of concurrent extremely low precipi-
tation and high temperature where both the PAP is less than the 15th percentile and T2M anomaly is greater than the 85th per-
centile. The bold curves show 11-yr running mean of the annual time series. The p values indicate the difference between the 
ALL and NAT forcings for the most recent 10- (2003–12), 20- (1993–2012), 30- (1983–2012), and 40-yr (1973–2012) periods of the 
CMIP5 protocol. The p values are calculated using the block bootstrap resampling approach. (f) The scatters of PAP against T2M 
anomalies in CMIP5 ALL simulations. The blue denotes the first decade (1961–70) and the red denotes the last decade (2010–19).
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due to anthropogenic climate change, and the extremely low precipitation increased 
by about 18% (13%–23%). Furthermore, the concurrence of such hot and dry extremes 
exhibited an increasing risk of 43% in the recent 30-yr period due to anthropogenic 
climate change. Recently, research by Yuan et al. (2019) warned that southern China, 
including Yunnan, faces a higher flash drought risk during the growing seasons in a 
warming future climate. This increase in drought risk over Yunnan, a southern nontra-
ditional drought region (humid region) of China, poses serious challenges for decision 
makers in water resource management and economic development.
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Simon F. B. Tett, and Buwen Dong

Anthropogenic forcing has likely increased the like-
lihood of the May–June 2019 severe low precipita-
tion event in southwestern China by approximately 
6 (1.4) times based on the HADGEM3-GA6 (CMIP6) 
simulations.

From late April to June 2019, southwestern China expe-
rienced a severe precipitation deficit. At the peak of 
this event (May and June), the area-averaged precipi-

tation anomaly was 42% lower than climatology and the 
lowest on record since 1960 in the region. Yunnan and 
western Sichuan were most severely affected by this di-
saster, where the precipitation deficit affected more than 
640,100 hectares of crops with rice, corn, and potatoes 
greatly damaged. Over 100 rivers and 180 reservoirs dried 
out (CMA 2020a). A severe drought that accompanied this 
precipitation deficit led to over 824,000 people and 566,000 
head of livestock having a severe lack of drinking water, 
with a direct economic loss of 2.81 billion Chinese Yuan 
($400 million; CMA 2020b). Therefore, it is timely to inves-
tigate the cause of this extremely low precipitation event.

In recent years, spring and summer precipitation 
in southwestern China have shown decreasing trends 
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(Wang et al. 2015; Lu et al. 2020), accompanied by more frequent drought events (Xin 
et al. 2006; Yuan et al. 2019), which have caused great damage to the local ecology, 
agriculture, and economy. Changes in atmospheric circulation, such as the westward 
shift and intensification of western Pacific subtropical high (Yang et al. 2012) and the 
northward shift of the midlatitude westerlies (Sun and Yang 2012), have been shown 
to contribute to the precipitation deficit. Anthropogenic influences have been found 
on extreme precipitation events in other parts of China (Sun et al. 2019; Zhang et al. 
2020; Li et al. 2021), while it is still unclear whether the attribution of human influence 
is detectable in precipitation deficit events in southwestern China. Thus, we have used 
a large ensemble of simulations to investigate the contribution of human-induced cli-
mate change on the likelihood of the severe precipitation deficit in May–June 2019 over 
southwestern China.

Data and methods.
The 2019 precipitation deficit event was largely confined to 20°–30°N, 96°–104°E (box 
in Fig. 1a) and we explored the sensitivity of our results to details of this region by 
varying the spatial domain. We used observations of precipitation at 180 stations in 
the region for 1960–2019. The station data have been rigorously quality controlled 
and homogenized at the China National Meteorological Information Center (Yang 
and Li 2014). We divided the region into multiple grid boxes of 0.56° lat × 0.83° lon 
resolution, consistent with the grid of the HadGEM3-GA6 model (see below), and av-
eraged the station precipitation within each grid box. Both observed and simulated 
gridded values are area-weight averaged to obtain regional mean precipitation time 
series, which are finally used to compute the precipitation anomaly (PA; namely, the 
anomaly of the total precipitation from May to June) relative to the 1961–2010 base 
period. The NCEP–NCAR reanalysis data (Kalnay et al. 1996) are used to investigate 
the atmospheric circulation.

The Met Office Hadley Centre event attribution system is based on the atmospheric 
model HadGEM3-GA6 and, currently, is the highest resolution global model used in 
attribution studies, with 85 vertical levels and an N216 horizontal resolution of 0.56° × 
0.83° (Ciavarella et al. 2018). Four ensemble sets are used: the historical experiment, a 
15-member ensemble of HadGEM3-GA6 forced with observed sea surface temperatures 
(SSTs) and anthropogenic and natural forcings (ALL) for the period 1960–2013; the 
historicalNat experiment, also a 15-member ensemble but with observed SSTs having 
anthropogenic influences removed (Christidis et al. 2013) and natural forcings (NAT); 
the historicalExt experiment, a 525-member ensemble similar to historical but only 
for 2019; and the historicalNatExt experiment, also a 525-member ensemble similar 
to historicalNat but for 2019. From these, the change in probability, expressed as the 
probability ratio (PR), due to human influences was computed. Simulations from the 
Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al. 2016) were used 
to assess the robustness of the HadGEM3-GA6 results (see the online supplemental 
material).

The May–June mean PA in southwestern China is used as the indicator, due to its 
important influence on water shortage and agricultural failure. Consecutive dry days 
(CDD; Zhang et al. 2011) and gridded soil moisture observational data (Shi et al. 2011) 
were also used to characterize the precipitation deficit. Circulation changes are char-
acterized by 500-hPa geopotential height (Z500) and 850-hPa zonal and meridional 
winds (UV850). Subsequently, May–June mean precipitation, CDD, and circulation are 
computed from all simulations, and anomalies are calculated relative to the 1961–2010 
climatologies. The probabilities of an exceptional precipitation deficit like the 2019 
event in the real (PALL) and natural (PNAT) world are calculated when precipitation anom-
alies are at or below the observed 2019 threshold. The probability ratio is defined as PR 
= PALL/PNAT. Uncertainties in PR are obtained using 1,000 bootstraps, with PR computed 
for each bootstrap realization (Christidis and Stott 2015), and we show the empirical 
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5th–95th percentile ranges. The probability density functions (PDFs) were estimated by 
kernel density estimation (KDE), which has been widely used to estimate the PDFs of 
precipitation events at monthly scales (Ma et al. 2017). We also tried other fitting meth-
ods and similar PR evaluation results were obtained (see the supplemental material).

Results.
Figure 1a shows that the observed May–June negative precipitation and relative soil 
moisture anomalies were centered in Yunnan province. In this region, the PA in most 
stations is less than −40 mm with many stations experiencing their record-breaking 
lowest precipitation. Figure 1b shows the temporal evolution of May–June PA over 
southwestern China based on observations and simulations. It is apparent that May–
June 2019 was the driest since 1960 (with PA value at −58.14 mm), and it is a one-in-
60-yr event in observations (Fig. 1c). These dry conditions were associated with abnor-
mally high pressure extending from the west at 500 hPa and anomalous northerlies 
over Yunnan at 850 hPa (Fig. 1d). These circulation patterns lead to anomalous sub-

Fig. 1. (a) Precipitation (mm) and relative soil moisture (%; shaded part) anomalies in May–June for observations in 2019. 
(b) Regional mean PA (mm) in May–June for observations (black), historical simulations (red), and historicalNat simulations 
(blue) for 1960–2013. Thick lines denote ensemble average, and shading denotes the 15-member spread. (c) Return period 
(black dots) of observed PA during the period of 1960–2019. The solid black line shows the results of kernel estimate and 90% 
confidence intervals. The dashed black line denotes the observed event in 2019. (d) Geopotential height anomaly (relative to 
1961–2010) at 500 hPa (contour: m) and winds anomalies (relative to 1961–2010) at 850 hPa (vector: m s-1) in May–June 2019.
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sidence and reduced water vapor transport from the Indian Ocean (Feng et al. 2014), 
favoring a severe precipitation deficit.

The model reasonably represents the temporal evolution and probability distribu-
tion for PA over southwestern China for the period 1960–2013. In Fig. 1b, the model 
results under ALL and NAT forcings cover most of the observed range. Figure 2a shows 
the histogram and KDE estimate of the probability distribution of the observed and 
simulated May–June PA. HadGEM3-GA6 produces similar distribution in the historical 
experiment to observations, confirmed using a two-sided Kolmogorov–Smirnov test 
with p values equal to 0.36. The shift of probability distribution toward a drier con-
dition under ALL forcing with a probability ratio near 5.14 (3.33–10.50) suggests that 
human influences have dried southwestern China relative to the preindustrial period.

An overall mean shift of PA toward a drier condition under ALL forcing relative 
to NAT forcing is clearly seen in the 2019 ensemble (Fig. 2b), suggesting an increase 
of probability of such precipitation deficit events over southwestern China due to hu-
man influences. The probability of the 2019-like event defined by PA is around 12% 
(9.54%–13.92%) in the 525 samples in the historicalExt experiment, while in the his-
toricalNatExt ensemble the probability decreases to 2% (1.21%–2.95%). This gives a 
probability ratio of 6.16 (3.81–9.78). When we vary the spatial domain by reducing it by 
up to 3° or increasing it by up to 5° from all sides, the corresponding probability ratios 
and their 90% confidence intervals are still greater than 1. The maximum probability 
ratio is observed when each boundary is expanded by 1°, reaching 7.52. The shift of 
CDD probability distribution toward longer duration under ALL forcing relative to NAT 
forcing (Fig. 2c) further suggests that the anthropogenic influence tends to increase 
the probability of long dry spells and therefore favors a precipitation deficit. Previous 
studies indicated that the cooling effect of increased aerosols from human activities in 
East Asia could reduce the thermal differences between land and ocean during the late 
spring, which favors the formation of anomalous high pressure center in southwestern 
China (Kim et al. 2007; Hu and Liu 2013). Thus, we compared the PDFs of geopotential 
height anomaly in historicalExt and historicalNatExt simulations (Fig. 2e) and found 
that the Z500 over southwestern China under ALL forcing is significantly higher than 
that under NAT forcing. The differences in precipitation and Z500 between historic-
alExt and historicalNatExt (Fig. 2f) also prove this. An anomalous high height center 
is simulated in southwestern China, corresponding to negative anomalies of precipita-
tion and high risk of precipitation deficit events.

In the CMIP6 simulations, the distributions of PA derived from historical and hist-
nat experiments are significantly distinguished from each other for 2005–14, as the p 
value of the Kolmogorov–Smirnov test is near zero (see Fig. ES1a in the supplemental 
material). The distribution shifts toward a drier regime from the hist-nat to histori-
cal experiments with a probability ratio near 1.4 (1.14–1.94), indicating a clear human 
influence for the observed precipitation deficit event. Further comparison of the his-
torical, hist-aer, and hist-GHG simulation results (Fig. ES1b) shows that a 2019-like 
event is more frequent under anthropogenic aerosol forcing but less frequent under 
greenhouse gas forcing relative to the hist-nat simulation, thus suggesting that the 
increased probability of low PA under historical forcing experiment relative to hist-nat 
forcing is due to changes in aerosols.

Conclusions.
The human influence on the severe May–June 2019 precipitation deficit in southwest-
ern China is analyzed with observational, HadGEM3-GA6, and CMIP6 model data. The 
results based on HadGEM3-GA6 ensembles show that the probability of extremely low 
precipitation in May–June similar to or more severe than the observed 2019 event has 
increased by about sixfold in the ALL simulations compared to the NAT simulations. 
Anthropogenic influence has significantly increased the chance for the occurrence of 
such events through increasing the probability of anomalous high pressure in south-
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Fig. 2. Kernel estimate of the probability density function and histograms of (a),(b) PA (mm), (c) CDD (day) anoma-
lies, averaged over Yunnan (black box of Fig. 1a), and (e) Z500 anomalies averaged over 15°–30°N, 90°–120°E. Anom-
alies in model simulations are relative to 1961–2010 climatology in historical simulation. Results are shown for (a) 
observations (black), historical (red), and historicalNat simulations (blue) during 1960–2013 and (b),(c),(e) historic-
alExt (red) and historicalNatExt (blue) 2019 simulations. The dashed black line denotes the observed event in 2019. 
(d) The probability ratios (blue lines) and 90% confidence intervals (gray shadings) for different study areas; 0° 
denotes the selected area in the study, 1° denotes increasing area by moving each boundary by 1°, and −1° denotes 
reducing area by moving each boundary by 1°. (f) Differences of precipitation (shading; mm) and Z500 (contour; m) 
between historicalExt and historicalNatExt ensembles. Dots indicate 5% significance level for precipitation.

western China (Figs. 2f, Fig. ES2). This result is robust to perturbations in the region 
definition. Analysis of the CMIP6 ensemble also finds an increasing risk of severe pre-
cipitation deficit, while the smaller PR in CMIP6 also implies that the HadGEM3-GA6 
model might overestimate the response to anthropogenic forcing. Compared with the 
observation results, the stronger drying trend in HadGEM3-GA6 historical simulations 
also implies this, but compared with the historicalNat results this stronger trend indi-
cates an apparent signal of anthropogenic influence.
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Anthropogenic forcings have reduced the likelihood 
of heavy precipitation in southern China like the 
2019 March–July event by about 60%

D uring March to July 2019, southern China witnessed 
an extraordinarily long rainy season that was the 
third wettest on record with total precipitation 

(1,303 mm) exceeding the climatological (1961–2010) aver-
age by 281 mm (Fig. 1a). The so-called first rainy season 
(FRS), normally spanning from April to June, is the main 
contributor (40%–50%) to annual precipitation totals 
over southern China and dominates the rainfall variabil-
ity there (Gu et al. 2018). Heavy precipitation can cause 
flooding and landslides, resulting in huge economic losses 
(Field et al. 2012).

Southern China, home to megacities like Guangzhou 
and Shenzhen, is highly populated, meaning a high ex-
posure of population and infrastructure to precipitation 
extremes and resultant hydrological hazards (Burke 
and Stott 2017; Li et al. 2018; Zhang et al. 2020). During 
6–13 June 2019, over 6 million people across several 
southern China provinces were affected by heavy rains, 
floods, and landslides. These extremes caused at least 91 
deaths, collapsed over 19,000 houses, damaged around 
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Fig. 1. (a) Observed March–July 2019 precipitation anomalies [mm (5 months)–1] from rain gauges. (b) Time series of obser-
vations and simulated ensemble means of precipitation anomalies (solid lines), and uncertainty bounds of 15 members of 
HadGEM3-GA6 and 53 members of CMIP5 spread shown as pink and blue shading, respectively. (c) Probability density func-
tions for the precipitation anomalies in the study region during March–July from 1961 to 2010 constructed with data from 
the HadGEM3-GA6 historical experiments (red) and OBS (green). (d) SLP (shading) and 850-hPa wind (vector) anomalies from 
NCEP reanalysis in March–July 2019. All anomalies are relative to 1961–2010 climatology. The gray box in (a) and (d) marks 
the study region.

83,000 houses, and affected 419,400 ha of crops (China Ministry of Emergency Man-
agement 2020). The direct economic loss was estimated to be more than 20 billion 
RMB (equivalent to 3 billion USD) (China Ministry of Emergency Management 2020). 
Understanding the driver for precipitation extremes is a key step toward formulating 
adaptation and mitigation strategies. This study aims to shed light on this scientific 
question by addressing potential anthropogenic influences on the probability of ex-
tremely wet seasons similar to the March–July 2019 event in this region.

Data and methods.
The March–July 2019 extreme precipitation event was bounded by 22°–28°N, 110°–
120°E over southern China (Fig. 1a). Quality-controlled daily rainfall over 2,400 me-
teorological stations (Shen et al. 2010) during 1961–2019 was provided by the China 
National Meteorological Information Center. March–July 2019 precipitation at most 
rain gauges in this region was around 150 mm (1 mm day–1) larger than normal (Fig. 1a).
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Raw gauge observations were interpolated onto a 0.56° × 0.83° grid (the same as 
the model resolution) by using bilinear interpolation. These gridded values were 
area-weight averaged to obtain regional seasonal total precipitation time series. 
Then precipitation time series anomalies were calculated and a positive anomaly of 
1.84 mm day–1 for the March–July 2019 event was used as the threshold (Fig. 1b) for the 
subsequent attribution analyses.

The HadGEM3-GA6 model (Ciavarella et al. 2018) at an N216 resolution of 0.56° × 
0.83° was applied to investigate the role of anthropogenic forcings on the changing 
risks of the 2019-like seasonal precipitation extremes over southern China. The mod-
el outputs include all-forced simulations (historical) conditioned on the observed 
sea surface temperatures (SST) and sea ice (HadISST; Rayner et al. 2003) and natural 
simulations (historicalNat) with anthropogenic signals removed from observed SSTs 
and with preindustrial forcings. Both historical and historicalNat ensembles consist 
of 15 members during the historical period (1961–2013), and 525 members for 2019. 
Accordingly, occurrence probabilities and resultant attribution conclusions are condi-
tioned on the 2019 SST patterns. The 1961–2010 climatology was constructed from the 
15-member ensembles.

The models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) 
were also included to further corroborate the attribution results. Since the historical 
runs terminate at the end of 2005, the CMIP5 historical runs were extended through 
2006 with the representative concentration pathway 8.5 (RCP8.5) runs. This is because 
the projected greenhouse gas forcings of RCP8.5 are more consistent with the present 
realization than the other scenarios (Peters et al. 2013). The RCP8.5 simulations for 
2009–28 are used as All and the natural-only forcing runs for 1961–80 are used as 
Nat (see Table ES1 in the online supplemental material for more details). The selection 
of time periods for both CMIP5 All and Nat simulations is to avoid impacts from ma-
jor volcano activates like the 1991 eruption of Mount Pinatubo. Note that, unlike the 
HadGEM3-GA6 simulations based on 2019 SSTs, the CMIP5 simulations encompasses 
a wide range of ocean states. Consequently, the event probabilities estimated hereafter 
are differently conditioned, such that the results from the two datasets will not be 
directly comparable.

A Kolmogorov–Smirnoff (K-S) test was applied to test if the distributions of the ob-
served and simulated precipitation anomalies during 1961–2010 are from the same 
population (Table ES1). The occurrence probability of events with equivalent or heavi-
er precipitation than the 2019 event (anomaly of 1.84 mm day–1 with respect to the 
1961–2010 climatology) in the entire HadGEM3-GA6 historical and historicalNat (or 
CMIP5 All and Nat) ensembles are indicated as PALL and PNAT respectively, and the risk 
ratio (RR) is computed from PALL/PNAT. The RR uncertainty with 90% confidence inter-
val (90% CI) was estimated by identifying the empirical 5th and 95th percentile among 
1,000 times resampling of model ensemble members by using Monte Carlo bootstrap-
ping procedure (Christidis et al. 2013). Doing each bootstrap, model ensemble simula-
tions are randomly resampled with replacement to get a set of new data with the same 
length as the original. Note that precipitation anomalies estimated from each model 
were calculated with their own 1961–2010 climatology, serving to remove the model 
climatological mean bias (Zhang et al. 2020).

Results and discussions.
The domain-averaged seasonal precipitation during March–July 2019 was 1.84 mm day–1 
larger than the 1961–2010 climatology (Fig. 1b), equivalent to a 1-in-28-yr event in the 
1961–2019 observations. This prolonged extreme seasonal precipitation event was 
mainly due to the early onset (by 28 days) and late cessation (by 22 days) of the first 
rainy season (CMA 2020).

The event was associated with an anomalous negative sea level pressure (SLP) cov-
ering southern China (Fig. 1d) and anomalous westerlies in the southwest of the center 
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of the East Asian westerly jet stream at 200-hPa (Fig. ES1d), indicating an enhanced and 
southward displaced East Asian westerly jet stream in 2019. This anomalous circulation 
strengthens the high-level divergence and is conducive to the enhancement of deep 
convection and precipitation in southern China. The western Pacific subtropical high is 
enhanced and extended to the southwest (Fig. ES1c). This is accompanied by 850-hPa 
westerly and southwesterly wind anomalies over southern China and the northeast-
ern portion of Indochina Peninsula (Fig. 1d), which enhances the climatological mean 
southwesterlies in southern China (Fig. ES1f). The wind anomalies further enhance the 
water vapor transport from the Indochina Peninsula (Fig. ES1b). This produces anoma-
lous moisture flux convergence over southern China (negative values in Fig. ES1e), pro-
viding a favorable moisture environment for abundant precipitation. Meanwhile, the 
anomalous southwesterlies advect warm air toward southern China. With more evap-
oration from land, increased water vapor is further enhanced. These conditions are 
consistent with previous studies finding that above-normal FRS precipitation is often 
associated with an enhanced and southwestward-extended western Pacific subtropical 
high and an enhanced Asian westerly jet (Zhang et al. 2009; Gu et al. 2018).

Evaluation of the HadGEM3-GA6 simulations was carried out to see if this mod-
el could accurately reproduce the characteristics of precipitation in the study re-
gion. The distributions of observed and simulated precipitation anomalies (Fig. 1c) 
during March–July in 1961–2010 cannot be distinguished based on the K-S test (p 
value = 0.54; Table ES1). Note that while precipitation anomalies are reasonably sim-
ulated, HadGEM3-GA6 overestimates actual precipitation values. Moreover, both the 
HadGEM3-GA6 and CMIP5 models overestimate seasonal precipitation variability (fig-
ures omitted), leading to the underestimation of return periods for the 2019-like precip-
itation event, particularly for HadGEM3-GA6 (Table 1). These results are consistent with 
the precipitation variability maps shown in Knutson and Zeng (2018).

The probability density functions (PDFs) of the 2019-like persistent precipitation 
events from both models show the historical simulations shifting toward drier rainy 
seasons compared to the historicalNat simulations (Figs. 2a,c). This gives a estimat-
ed risk ratio of 0.43 (90% CI: 0.31, 0.57) and 0.38 (90% CI: 0.32, 0.44) for the CMIP5 
and HadGEM3-GA6 ensembles respectively (Table 1), which implies that anthropogen-
ic forcings have reduced the likelihood of a 2019-like extreme seasonal precipitation 
event over southern China by around 60%. Most of the best estimates of RR values 
of individual CMIP5 models are less than 1, except for GFDL-ESM2M and GISS-E2-H 
(Fig. ES2). Moreover, the changes in return periods also demonstrate that the 2019-like 
prolonged rainy seasonal precipitation occurs less frequently due to anthropogenic 
influences and it changes from a 1-in-4-yr event for historicalNat simulations to a 1-in-
9-yr event for Historical simulations (Figs. 2b,d; Table 1). Although the HadGEM3-GA6 
2019 simulations are atmospheric model simulations and conditional to 2019 SST pat-
tern, their attribution results are consistent with the CMIP5 results, which take into 
account the variability in SST patterns.

The results are consistent with the findings in Zhang et al. (2020) that anthropo-
genic forcings reduced the probability of long-lasting heavy rainfall in central west-
ern China. The reduced probability of persistent heavy rainfall due to anthropogenic 

Models Return period (yr) (90% CI) Risk ratio (90% CI)

HadGEM3-GA6
historical 8.78 (6.12, 13.17)

0.38 (0.32, 0.44)
historicalNat 3.31 (2.83, 4.35)

CMIP5
All 15.79 (9.46, 33.10)

0.43 (0.31, 0.57)
Nat 6.95 (5.48, 9.92)

Table 1. The best estimate and 90% confidence intervals of return period and risk ratio 
estimated with HadGEM3-GA6 and CMIP5 models.
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forcings could be mainly due to increased aerosols in the climate system (Song et al. 
2014; Li et al. 2015; Zhang and Li 2016; Burke and Stott 2017). Specifically, by scattering 
and absorbing solar radiation, aerosols can induce surface cooling through aerosol–
radiation interactions, and therefore can lead to reduced precipitation by increasing 
atmospheric stability. Aerosols also interact directly with cloud by serving as cloud 
condensation nuclei or ice nuclei, leading to changes in cloud radiative properties 

Fig. 2. Probability density functions of (a) HadGEM3-GA6 and (c) CMIP5 All (2009–28) and Nat (1961–80) ensembles 
simulations of March–July 2019 precipitation anomalies (mm day–1) in the study region. Return period for the (b) 
HadGEM3-GA6 and (d) CMIP5 All and Nat ensemble simulations. Each marker represents an ensemble member, and 
the green and red lines indicate the return period for historical and historicalNat, respectively. The errors bars 
indicate the 90% confidence interval using bootstrap resampling by 1,000 times. (e) Best estimates (blue lines) and 
90% confidence intervals (aqua shadings) of risk ratio for CMIP5 and HadGEM3-GA6.
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and reducing precipitation efficiency (Rosenfeld et al. 2008). In addition, increased 
aerosols can weaken land–sea thermal contrast and therefore lead to weakening of 
the monsoon circulation and reduced precipitation over monsoon regions (Dong et al. 
2019; Zhou et al. 2020). The impacts of anthropogenic forcings on changing risks of 
persistent precipitation events are also emphasized by the findings in Ji et al. (2020). 
They demonstrated that the anthropogenically induced climate change has reduced 
the likelihood of extreme flooding by around 34% over the Yellow River basins during 
summer, consistent with our result. In addition, Lu et al. (2021) used HadGEM3-GA6 
to reveal that anthropogenic forcings have reduced precipitation in favor of severe 
drought development during May–June over southwestern China.

Conclusions.
Using large ensembles of HadGEM3-GA6 and CMIP5 models, anthropogenic influences 
on changing risks of the 2019 March-to-July-like extreme rainy seasonal precipitation 
in southern China were quantified. Results based on these two models consistently 
indicate similar cases are less likely to occur in the current climate compared to the 
natural world. Specifically, anthropogenic forcings have made the probability of an 
extreme seasonal precipitation event like 2019 approximately 60% less likely.
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