STATE OF THE CLIMATE IN 2017

Editors
Jessica Blunden
Derek S. Arndt
Gail Hartfield

Chapter Editors
Peter Bissolli
Howard J. Diamond
Robert J. H. Dunn
Catherine Ganter
Nadine Gobron
Martin O. Jeffries
Gregory C. Johnson
Tim Li
Ademe Mekonnen
Emily Osborne
Jacqueline A. Richter-Menge
Ahira Sánchez-Lugo
Ted A. Scambos
Carl J. Schreck III
Sharon Stammerjohn
Diane M. Stanitski
Kate M. Willett

Technical Editor
Mara Sprain

AMERICAN METEOROLOGICAL SOCIETY
Cover Credits:

Front: ©Ron Thomas/Spring desert wildflowers in Anza Borrego Desert State Park, CA/Getty Images.

Back: Smoke and Fire in Southern California: Thick smoke was streaming from several fires in Southern California when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired a natural-color image in the afternoon on December 5, 2017. On the same day, the Multi Spectral Imager (MSI) on the European Space Agency’s Sentinel-2 satellite captured the data for a false-color image of the burn scar. Active fires appear orange; the burn scar is brown. Unburned vegetation is green; developed areas are gray. The Sentinel-2 image is based on observations of visible, shortwave infrared, and near infrared light.

Instrument(s):
- Terra - MODIS
- Sentinel-2

How to cite this document:

Citing the complete report:

Citing a chapter (example):

Citing a section (example):

Calderón, Blanca, Center for Geophysical Research, University of Costa Rica, San José, Costa Rica
Camargo, Suzana J., Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
Campbell, Ethan C., School of Oceanography, University of Washington, Seattle, Washington
Campbell, Jayaka D., Department of Physics, The University of the West Indies, Jamaica
Cappelen, J., Danish Meteorological Institute, Copenhagen, Denmark
Carrea, Laura, Department of Meteorology, University of Reading, Reading, United Kingdom
Carter, Brendan R., Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, and NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
Castro, Anabel, Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú
Chambers, Don P., College of Marine Science, University of South Florida, St. Petersburg, Florida
Cheng, Lijing, International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Christiansen, Hanne H., Geology Department, University Centre in Svalbard, Longyearbyen, Norway
Christy, John R., University of Alabama in Huntsville, Huntsville, Alabama
Chung, E.-S., Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscane, Miami, Florida
Clem, Kyle R., Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
Coelho, Caio A.S., CPTEC/INPE Center for Weather Forecasts and Climate Studies, Cachoeira Paulista, Brazil
Coldewey-Egbers, Melanie, German Aerospace Center (DLR) Oberpfaffenhofen, Wessling, Germany
Colwell, Steve, British Antarctic Survey, Cambridge, United Kingdom
Cooper, Owen. R., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Copland, C., Department of Geography, University of Ottawa, Ottawa, Ontario, Canada
Costanza, Carol, Antarctic Meteorological Research Center and Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin
Covey, Curt, Lawrence Livermore National Laboratory, Livermore, California
Coy, Lawrence, Science Systems and Applications, Inc., NASA Goddard Space Flight Center, Greenbelt, Maryland
Cronin, T., U.S. Geological Survey, Reston, Virginia
Crouch, Jake, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Cruzado, Luis, Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú
Davis, Sean M., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Davletshin, S. G., Russian Institute for Hydrometeorological Information, Obninsk, Russia
de Eyto, Elvira, Marine Institute, Newport, Ireland
de Jeu, Richard A. M., EODC GmbH, Vienna, Austria
De La Cour, Jacqueline L., NOAA/NESDIS Coral Reef Watch, College Park, Maryland, and Global Science and Technology, Inc., Greenbelt, Maryland
de Laat, Jos, Royal Netherlands Meteorological Institute (KNMI), DeBilt, Netherlands
DeGasperi, Curtis L., King County Water and Land Resources Division, Seattle, Washington
Degenstein, Doug, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Deline, P., EDYTEM Lab, University Savoie Mont Blanc, Chambéry, France
Demircan, Mesut, Turkish State Meteorological Service, Ankara, Turkey
Derksen, C., Climate Research Division, Environment and Climate Change Canada, Downsview, Ontario, Canada
Dewitte, Boris, Centro de Estudios Avanzado en Zonas Áridas, and Universidad Católica del Norte, Coquimbo, Chile, and Laboratoire d’Études en Géophysique et Océanographie Spatiales, Toulouse, France
Dhurmea, R., Mauritius Meteorological Service, Vacoas, Mauritius
Di Girolamo, Larry, University of Illinois at Urbana–Champaign, Urbana, Illinois
Diamond, Howard J., NOAA/OAR Air Resources Laboratory, Silver Spring, Maryland
Dickerson, C., Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
Dlugokencky, Ed J., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Dohan, Kathleen, Earth and Space Research, Seattle, Washington
Dokuiili, Martin T., Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
Dolman, A. Johannes, Department of Earth Sciences, Earth and Climate Cluster, VU University Amsterdam, Amsterdam, Netherlands
Domingues, Catia M., Institute for Marine and Antarctic Studies, University of Tasmania, Antarctic Climate and Ecosystems Cooperative Research Centre, and Australian Research Council’s Centre of Excellence for Climate System Science, Hobart, Tasmania, Australia
Domingues, Ricardo, Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
Donat, Markus G., Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
Dong, Shenfu, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, and Cooperative Institute for Marine and Atmospheric Science, Miami, Florida
Dorigo, Wouter A., Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
Drozdov, D. S., Earth Cryosphere Institute, and Tyumen State University, Tyumen, Russia
Dunn, Robert J. H., Met Office Hadley Centre, Exeter, United Kingdom
Durre, Imke, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Dutton, Geoff S., Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Eakin, C. Mark, NOAA/NESDIS Coral Reef Watch, College Park, Maryland
ElKharrim, M., Direction de la Météorologie Nationale Maroc, Rabat, Morocco
Elkins, James W., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Epstein, H. E., Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia
Espinoza, Jhan C., Instituto Geofísico del Perú, Lima, Perú
Famiglietti, James S., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Farmer, J., Department of Geosciences, Princeton University, Princeton, New Jersey
Farrell, S., Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
Fauchald, P., Norwegian Institute for Nature Research, Tromsø, Norway
Fausto, R. S., Geological Survey of Denmark and Greenland, Copenhagen, Denmark
Feely, Richard A., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
Feng, Z., Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
Fenimore, Chris, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Fettweis, X., University of Liège, Liège, Belgium
Fioletov, Vitali E., Environment and Climate Change Canada, Toronto, Ontario, Canada
Flemming, Johannes, European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Fogt, Ryan L., Department of Geography, Ohio University, Athens, Ohio
Folland, Chris, Met Office Hadley Centre, Exeter, and School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom, and Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden, and International Centre for Applied Climate Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
Forbes, B. C., Arctic Centre, University of Lapland, Rovaniemi, Finland
Foster, Michael J., Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
Francis, S. D., National Weather Forecasting and Climate Research Centre, Nigerian Meteorological Agency, Abuja, Nigeria
Franz, Bryan A., NASA Goddard Space Flight Center, Greenbelt, Maryland
Frey, Richard A., Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
Frith, Stacey M., Science Systems and Applications, Inc. and NASA Goddard Space Flight Center, Greenbelt, Maryland
Froidevaux, Lucien, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
GANter, Catherine, Bureau of Meteorology, Melbourne, Victoria, Australia
Geiger, Erick F., NOAA/NESDIS Coral Reef Watch, College Park, Maryland, and Global Science and Technology, Inc., Greenbelt, Maryland
Gerland, S., Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Gilson, John, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
Gobron, Nadine, European Commission, Joint Research Centre, Ispra, Italy
Goldenberg, Stanley B., NOAA/OAR/AOML Hurricane Research Division, Miami, Florida
Gomez, Andrea M., NOAA/NESDIS Coral Reef Watch, College Park, Maryland, and Ecosystem Science Lab and Research Division, Miami, Florida
Goni, Gustavo, NOAA/NESDIS Coral Reef Watch, College Park, Maryland, and Global Science and Technology, Inc., Greenbelt, Maryland
Goni, Gustavo, NOAA/NESDIS Coral Reef Watch, College Park, Maryland, and Ecosystem Science Lab and Research Division, Miami, Florida
Haimberger, Leo, Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Hagos, S., Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
Hahn, Sebastian, Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
Haimberger, Leo, Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria
Newman, L., SOOS International Project Office, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia.
Newman, Paul A., NASA Goddard Space Flight Center, Greenbelt, Maryland
Nielsen-Gammon, John W., Texas A&M University, College Station, Texas
Nieto, Juan José, Centro Internacional para la Investigación del Fenómeno de El Niño, Guayaquil, Ecuador
Noetzli, Jeannette, WSL Institute for Snow and Avalanche Research, Davos, Switzerland
Noll, Ben E., National Institute of Water and Atmospheric Research, Ltd., (NIWA), Auckland, New Zealand
O’Neel, S., USGS, Alaska Science Center, Anchorage, Alaska
Osborn, Tim J., Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
Osborne, Emily, NOAA/OAR Arctic Research Program, Silver Spring, Maryland
Overland, J., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington
Oyunjargal, Lamjav, Hydrology and Environmental Monitoring, Institute of Meteorology and Hydrology, National Agency for Meteorology, Ulaanbaatar, Mongolia
Park, T., Department of Earth and Environment, Boston University, Boston, Massachusetts
Pasch, Richard J., NOAA/NWS National Hurricane Center, Miami, Florida
Pascual-Ramírez, Reynaldo, National Meteorological Service of Mexico, Mexico
Pastor Saavedra, Maria Asuncion, Agencia Estatal de Meteorología, Madrid, Spain
Paterson, Andrew M., Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, Ontario, Canada
Paulik, Christoph, VanderSat B.V., Haarlem, the Netherlands
Pearce, Petra R., National Institute of Water and Atmospheric Research Ltd., Auckland, New Zealand
Peltier, Alexandre, Météo-France en Nouvelle-Cáledonie, Nouméa, Caledonia
Pelto, Mauri S., Nichols College, Dudley, Massachusetts
Peng, Liang, State University of New York, Albany, New York
Perkins-Kirkpatrick, Sarah E., Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia
Perovich, Don, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
Petropavlovskikh, Irina, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Pezza, Alexandre B., Greater Wellington Regional Council, Wellington, New Zealand
Phillips, C., Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, Wisconsin
Phillips, David, Environment and Climate Change Canada, Toronto, Ontario, Canada
Phoenix, G., Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
Pinty, Bernard, European Commission, Joint Research Centre, Ispra, Italy
Pinzon, J., NASA Goddard Space Flight Center, Greenbelt, Maryland
Po-Chedley, S., Lawrence Livermore National Laboratory, Livermore, California
Polashenski, C., USACE, ERDC, Cold Regions Research and Engineering Laboratory, and Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
Purkey, Sarah G., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Quispe, Nelson, Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú
Rajeevan, Madhavan, Earth System Science Organization, Ministry of Earth Sciences, New Delhi, India
Rakotoarimalalala, C., Madagascar Meteorological Service, Antananarivo, Madagascar
Rayner, Darren, National Oceanography Centre, Southampton, United Kingdom
Raynolds, M. K., Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
Reagan, James, Earth System Science Interdisciplinary Center/Cooperative Institute for Climate and Satellites—Maryland, University of Maryland, College Park, Maryland, and NOAA/NESDIS National Centers for Environmental Information, Silver Spring, Maryland
Reid, Phillip, Australian Bureau of Meteorology, and Antarctic Climate and Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia
Reimer, Christoph, EODC, Vienna, Austria
Rémy, Samuel, Institut Pierre-Simon Laplace, CNRS / UPMC, Paris, France
Revadekar, Jayashree V., Indian Institute of Tropical Meteorology, Pune, India
Richardson, A. D., School of Informatics, Computing and Cyber Systems and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona
Richter-Menge, Jacqueline, University of Alaska Fairbanks, Fairbanks, Alaska
Ricker, R., Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Rimmer, Alon, Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
Robinson, David A., Department of Geography, Rutgers University, Piscataway, New Jersey
Rodell, Matthew, Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland
Rodriguez Camino, Ernesto, Agencia Estatal de Meteorología, Madrid, Spain
Romanovsky, Vladimir E., Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
Ronchail, Josyane, Université Paris Diderot/Laboratoire L’OCEAN-IPSL, Paris, France
Rosenlof, Karen H., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Rösnner, Benjamin, Laboratory for Climatology and Remote Sensing, Faculty of Geography, University of Marburg, Marburg, Germany
Roth, Chris, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Roth, David Mark, NOAA/NWS Weather Prediction Center, College Park, Maryland
Rusak, James A., Dorset Environmental Science Centre, Ontario Ministry of the Environment and Climate Change, Dorset, Ontario, Canada
Rutishäuser, T., Swiss Academies of Arts and Science, Berne, Switzerland
Salée, Jean-Bapiste, Sorbonne Universités, L’OCEAN-IPSL, Paris, France, and British Antarctic Survey, Cambridge, United Kingdom
Sánchez-Lugo, Ahira, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Santee, Michelle L., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
Sasgen, L., Climate Sciences Department, Alfred Wegener Institute, Bremerhaven, Germany
Sayad, T. A., Department of Meteorology, Al-Azhar University, Egypt
Sayouri, Amal, Direction de la Météorologie Nationale Maroc, Rabat, Morocco
Scambos, Ted A., National Snow and Ice Data Center, University of Colorado Boulder, Boulder, Colorado
Scanlon, T., Department of Geodesy and Geoinformation, Vienna University of Technology, Vienna, Austria
Schenzinger, Verena, Department of Meteorology and Geophysics, University of Vienna, Austria
Schladow, S. Geofffrey, Tahoe Environmental Research Center, University of California at Davis, Davis, California
Schmid, Claudia, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
Schmid, Martin, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
Schreck III, Carl J., North Carolina State University, Cooperative Institute for Climate and Satellites-North Carolina, Asheville, North Carolina
Sellkirk, H. B., Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, Maryland
Send, Uwe, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Sensoy, Serhat, Turkish State Meteorological Service, Ankara, Turkey
Sharp, M., Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
Shi, Lei, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Shiklomanov, Nikolai I., Department of Geography, George Washington University, Washington, D.C.
Shimaraeva, Svetlana V., Institute of Biology, Irkutsk State University, Russia
Siegel, David A., University of California–Santa Barbara, Santa Barbara, California
Silow, Eugene, Institute of Biology, Irkutsk State University, Russia
Sima, Fatou, Division of Meteorology, Department of Water Resources, Banjul, The Gambia
Simmons, Adrian J., European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Skirving, William J., NOAA/NESDIS Coral Reef Watch, College Park, Maryland, and ReefSense Pty Ltd, Townsville, Queensland, Australia
Smeed, David A., National Oceanography Centre, Southampton, United Kingdom
Smeets, C. J. P. P., Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, Netherlands
Smith, Adam, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
Smith, Sharon L., Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada
Soden, B., Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key Biscane, Miami, Florida
Sofieva, Viktoria, Finnish Meteorological Institute (FMI), Helsinki, Finland
Sparks, T. H., Coventry University, Coventry, United Kingdom
Spence, Jacqueline M., Meteorological Service, Jamaica, Kingston, Jamaica
Spillane, Sandra, Met Éireann, Irish Meteorological Service, Dublin, Ireland
Srivastava, A. K., India Meteorological Department, Jaipur, India
Stackhouse, Jr., Paul W., NASA Langley Research Center, Hampton, Virginia
Stammerjohn, Sharon, Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado
Stanitzki, Diane M., NOAA/OAR Earth System Research Laboratory, Boulder, Colorado
Steinbrecht, Wolfgang, German Weather Service (DWD), Hohenpeissenberg, Germany
Stella, José L., Servicio Meteorológico Nacional, Buenos Aires, Argentina
Stengel, M., Deutscher Wetterdienst, Offenbach, Germany
Stephenson, Kimberly, Department of Physics, The University of the West Indies, Jamaica
Stephenson, Tannecia S., Department of Physics, The University of West Indies, Jamaica
Strahan, Susan, Universities Space Research Association, NASA Goddard Space Flight Center, Greenbelt, Maryland
Streletskiy, Dimitri A., Department of Geography, George Washington University, Washington, D.C.
Strong, Alan E., NOAA/NESDIS Coral Reef Watch, College Park, Maryland, and Global Science and Technology, Inc., Greenbelt, Maryland
Wang, Lei, Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana

Wang, M., Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Wang, Ray, Georgia Institute of Technology, Atlanta, Georgia

Wang, Sheng-Hung, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio

Wanninkhof, Rik, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Watanabe, Shohei, Tahoe Environmental Research Center, University of California at Davis, Davis, California

Weber, Mark, University of Bremen, Bremen, Germany

Weber, Robert A., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Westberry, Toby K., Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon

Weyhenmeyer, Gesa A., Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden

Whitewood, Robert, Environment and Climate Change Canada, Toronto, Ontario, Canada

Widiansky, Matthew J., Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii

Wiese, David N., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Wijffels, Susan E., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Wilber, Anne C., Science Systems and Applications, Inc., Hampton, Virginia

Wild, Jeanette D., INNOVIM, NOAA Climate Prediction Center, College Park, Maryland

Willett, Kate M., Met Office Hadley Centre, Exeter, United Kingdom

Willis, Josh K., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Wolken, G., Alaska Division of Geological and Geophysical Surveys, and International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Wong, Takmeng, NASA Langley Research Center, Hampton, Virginia

Wood, E. F., Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Wood, K., Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington

Woolway, R. Iestyn, Department of Meteorology, University of Reading, Reading, United Kingdom

Wouters, B., Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands

Xue, Yan, NOAA/NWS National Centers for Environmental Prediction, Climate Prediction Center, College Park, Maryland

Yin, Xungang, ERT Inc., NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Yoon, Huang, Department of Oceanography, University of Hawaii, Honolulu, Hawaii

York, A., Alaska Fire Science Consortium, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Yu, Lisa, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Zambrano, Eduardo, Centro Internacional para la Investigación del Fenómeno El Niño, Guayaquil, Ecuador

Zhang, Hual-Min, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Zhang, Peiquin, Beijing Climate Center, Beijing, China

Zhao, Guanguo, University of Illinois at Urbana-Champaign, Urbana, Illinois

Zhao, Lin, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou, China

Zhu, Zhiwei, Nanjing University of Information Science and Technology, China

Ziel, R., Alaska Fire Science Consortium, International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, Alaska

Ziemke, Jerry R., Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland, and NASA Goddard Space Flight Center, Greenbelt, Maryland

Ziese, Markus G., Global Precipitation Climatology Center, Deutscher Wetterdienst, Offenbach am Main, Germany

Griffin, Jessica, Graphics Support, Cooperative Institute for Climate and Satellites–NC, North Carolina State University, Asheville, North Carolina

Hammer, Gregory, Content Team Lead, Communications and Outreach, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Love-Brotak, S. Elizabeth, Lead Graphics Production, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Misch, Deborah J., Graphics Support, TeleSolv Consulting LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Riddle, Deborah B., Graphics Support, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Slagle, Mary, Graphics Support, TeleSolv Consulting LLC, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Sprain, Mara, Technical Editor, LAC Group, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina

Veasey, Sara W., Visualization Team Lead, Communications and Outreach, NOAA/NESDIS National Centers for Environmental Information, Asheville, North Carolina
TABLE OF CONTENTS

List of authors and affiliations ... i
Abstract ... xvi

1. INTRODUCTION .. 1
 SIDEBAR 1.1: ESSENTIAL CLIMATE VARIABLES .. 2

2. GLOBAL CLIMATE .. 5
 a. Overview ... 5
 b. Temperature .. 11
 1. Global surface temperature ... 11
 2. Lake surface temperature .. 13
 3. Land surface temperature extremes ... 15
 4. Tropospheric temperature .. 16
 5. Stratospheric temperature .. 18
 c. Cryosphere ... 20
 1. Permafrost thermal state .. 20
 2. Northern Hemisphere continental snow cover extent ... 22
 3. Alpine glaciers .. 23
 d. Hydrological cycle .. 25
 1. Surface humidity .. 25
 2. Total column water vapor ... 26
 3. Upper tropospheric humidity .. 27
 4. Precipitation ... 28
 SIDEBAR 2.1: LAND SURFACE PRECIPITATION EXTREMES ... 29
 e. Atmospheric circulation .. 39
 1. Mean sea level pressure and related modes of variability .. 39
 2. Surface winds ... 41
 3. Upper air winds .. 43
 f. Earth radiation budget ... 45
 1. Earth radiation budget at top-of-atmosphere ... 45
 g. Atmospheric composition .. 46
 1. Long-lived greenhouse gases .. 46
 2. Ozone-depleting gases ... 49
 3. Aerosols ... 49
 4. Stratospheric ozone ... 51
 5. Stratospheric water vapor ... 54
 6. Tropospheric ozone .. 56
 SIDEBAR 2.2: THE TROPOSPHERIC OZONE ASSESSMENT REPORT ... 58
 h. Land surface properties .. 61
 1. Land surface albedo dynamics ... 61
 2. Terrestrial vegetation activity ... 62
 SIDEBAR 2.3: PHENOLOGY OF TERRESTRIAL AND FRESHWATER PRIMARY PRODUCERS .. 63
 3. Biomass burning ... 67

3. GLOBAL OCEANS ... 69
 a. Overview ... 69
 b. Sea surface temperatures .. 69
 c. Ocean heat content .. 72
 SIDEBAR 3.1: UNPRECEDENTED THREE YEARS OF GLOBAL CORAL BLEACHING 2014–2017 74
d. Salinity ... 77
 1. Introduction.. 77
 2. Sea surface salinity ... 78
 3. Subsurface salinity ... 79

4. Long-term perspective ... 84

5. Sea ice extent ... 81
 1. Surface heat fluxes ... 82
 2. Surface freshwater fluxes .. 83
 3. Wind stress ... 83
 4. Long-term perspective ... 84

6. Surface currents .. 84
 1. Pacific Ocean .. 87
 2. Indian Ocean .. 91
 3. Atlantic Ocean ... 91

7. Meridional overturning and oceanic heat transport circulation observations in the
 North Atlantic Ocean .. 91

8. Global ocean heat, freshwater, and momentum fluxes... 81
 1. Surface heat fluxes ... 82
 2. Surface freshwater fluxes .. 83
 3. Wind stress ... 83
 4. Long-term perspective ... 84

9. Surface currents .. 84
 1. Pacific Ocean .. 87
 2. Indian Ocean .. 91
 3. Atlantic Ocean ... 91

4. THE TROPICS ... 101
 a. Overview .. 101
 b. ENSO and the tropical Pacific .. 102
 1. Oceanic conditions ... 102
 2. Atmospheric circulation: Tropics and subtropics .. 102
 c. Tropical intraseasonal activity .. 104
 d. Intertropical convergence zones .. 107
 1. Pacific ... 107
 2. Atlantic .. 109
 e. Global monsoon summary ... 110
 f. Tropical cyclones ... 112
 1. Overview ... 112
 2. Atlantic basin ... 114
 3. Eastern North Pacific and Central North Pacific basins ... 118
 4. Western North Pacific basin ... 120
 5. North Indian Ocean basin .. 124
 6. South Indian Ocean basin .. 125
 7. Australian basin .. 126
 8. Southwest Pacific basin ... 128
 g. Tropical cyclone heat potential ... 129
 h. Indian Ocean dipole ... 132

5. THE ARCTIC ... 143
 a. Introduction ... 143
 b. Surface air temperature .. 144
 c. Sea surface temperature ... 146
 d. Sea ice cover .. 147
 1. Sea ice extent ... 147
 2. Age of the ice .. 148
 3. Sea ice thickness and snow depth .. 149

SIDEBAR 3.2: Nu' A KAI: FLOODING IN HAWAII CAUSED BY A “STACK” OF OCEANOGRAPHIC PROCESSES........ 88

SIDEBAR 4.2: THE NEW GOES-R SERIES: MUCH IMPROVED “GLASSES” TO VIEW THE TROPICS........ 138

SIDEBAR 4.3: HURRICANE HARVEY: THE HALLMARK STORM OF A BUSY AND WET 2017
 HURRICANE SEASON FOR THE UNITED STATES 140
Sidebar 5.1: Paleoclimate records: Providing context and understanding of current Arctic change .. 150
e. Greenland ice sheet .. 152
 1. Surface melting .. 152
 2. Surface mass balance .. 153
 3. Albedo .. 153
 4. Total mass balance ... 154
 5. Marine-terminating glaciers .. 154
 6. Surface air temperatures ... 154
f. Glaciers and ice caps outside Greenland ... 156
Sidebar 5.2: Indigenous knowledge and the coproduction of knowledge process: Creating a holistic understanding of Arctic change .. 160
g. Terrestrial permafrost ... 161
 1. Permafrost temperatures ... 162
 2. Active layer thickness ... 164
h. Tundra greenness .. 165
Sidebar 5.3: Wildland fire in boreal and Arctic North America ... 167
i. Terrestrial snowcover in the Arctic ... 169
j. Ozone and UV radiation ... 171

6. Antartica .. 175
 a. Overview ... 175
 b. Atmospheric circulation and surface observations .. 176
 c. Net precipitation (P – E) ... 179
d. Seasonal melt extent and duration ... 181
e. Sea ice extent, concentration, and seasonality ... 183
f. Southern Ocean .. 185
 1. Upper ocean .. 185
 2. Intermediate ocean .. 187
 3. Biogeochemical status: Continued ocean acidification .. 187
Sidebar 6.1: Return of the Maude Rise Polynya: Climate litmus or sea ice anomaly? .. 188
g. 2017 Antarctic ozone hole ... 190

7. Regional Climates .. 193
 a. Overview ... 193
 b. North America .. 193
 1. Canada ... 193
 2. United States .. 195
 3. Mexico ... 197
c. Central America and the Caribbean .. 199
 1. Central America .. 199
 2. Caribbean ... 200
Sidebar 7.1: Impacts from Hurricanes Irma and Maria in the Caribbean .. 202
d. South America .. 204
 1. Northern South America ... 204
 2. Central South America .. 205
 3. Southern South America ... 207
Sidebar 7.2: The 2017 Coastal El Niño .. 210
e. Africa ... 212
 1. North Africa .. 212
 2. West Africa .. 214
 3. Eastern Africa .. 216
 4. Southern Africa .. 217
 5. Western Indian Ocean island countries .. 220
In 2017, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—reached new record highs. The annual global average carbon dioxide concentration at Earth’s surface for 2017 was 405.0 ± 0.1 ppm, 2.2 ppm greater than for 2016 and the highest in the modern atmospheric measurement record and in ice core records dating back as far as 800 000 years. The global growth rate of CO₂ has nearly quadrupled since the early 1960s.

With ENSO-neutral conditions present in the central and eastern equatorial Pacific Ocean during most of the year and weak La Niña conditions notable at the start and end, the global temperature across land and ocean surfaces ranked as the second or third highest, depending on the dataset, since records began in the mid-to-late 1800s. Notably, it was the warmest non-El Niño year in the instrumental record. Above Earth’s surface, the annual lower tropospheric temperature was also either second or third highest according to all datasets analyzed. The lower stratospheric temperature was about 0.2°C higher than the record cold temperature of 2016 according to most of the in situ and satellite datasets.

Several countries, including Argentina, Uruguay, Spain, and Bulgaria, reported record high annual temperatures. Mexico broke its annual record for the fourth consecutive year. On 27 January, the temperature reached 43.4°C at Puerto Madryn, Argentina—the highest temperature recorded so far south (43°S) anywhere in the world. On 28 May in Turbat, western Pakistan, the high of 53.5°C tied Pakistan’s all-time highest temperature and became the world-record highest temperature for May.

In the Arctic, the 2017 land surface temperature was 1.6°C above the 1981–2010 average, the second highest since the record began in 1900, behind only 2016. The five highest annual Arctic temperatures have all occurred since 2007. Exceptionally high temperatures were observed in the permafrost across the Arctic, with record values reported in much of Alaska and northwestern Canada. In August, high sea surface temperature (SST) records were broken for the Chukchi Sea, with some regions as warm as +11°C, or 3° to 4°C warmer than the long-term mean (1982–present). According to paleoclimate studies, today’s abnormally warm Arctic air and SSTs have not been observed in the last 2000 years. The increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 7 March, sea ice extent at the end of the growth season saw its lowest maximum in the 37-year satellite record, covering 8% less area than the 1981–2010 average. The Arctic sea ice minimum on 13 September was the eighth lowest on record and covered 25% less area than the long-term mean.

Preliminary data indicate that glaciers across the world lost mass for the 38th consecutive year on record; the declines are remarkably consistent from region to region. Cumulatively since 1980, this loss is equivalent to slicing 22 meters off the top of the average glacier.

Antarctic sea ice extent remained below average for all of 2017, with record lows during the first four months. Over the continent, the austral summer seasonal melt extent and melt index were the second highest since 2005, mostly due to strong positive anomalies of air temperature over most of the West Antarctic coast. In contrast, the East Antarctic Plateau saw record low mean temperatures in March. The year was also distinguished by the second smallest Antarctic ozone hole observed since 1988.

Across the global oceans, the overall long-term SST warming trend remained strong. Although SST cooled slightly from 2016 to 2017, the last three years produced the three highest annual values observed; these high anomalies have been associated with widespread coral bleaching. The most recent global coral bleaching lasted three full years, June 2014 to May 2017, and was the longest, most widespread, and almost certainly most destructive such event on record. Global integrals of 0–700-m and 0–2000-m ocean heat content reached record highs in 2017, and global mean sea level during the year became the highest annual average in the 25-year satellite altimetry record, rising to 77 mm above the 1993 average.

In the tropics, 2017 saw 85 named tropical storms, slightly above the 1981–2010 average of 82. The North Atlantic basin was the only basin that featured an above-normal season, its seventh most active in the 164-year record. Three hurricanes in the basin were especially notable. Harvey produced record rainfall totals in areas of Texas and Louisiana, including a storm total of 1538.7 mm near Beaumont, Texas, which far exceeds the previous known U.S. tropical cyclone record of 1320.8 mm. Irma was the strongest tropical cyclone globally in 2017 and the strongest Atlantic hurricane outside of the Gulf of Mexico and Caribbean on record with maximum winds of 295 km h⁻¹. Maria caused catastrophic destruction across the Caribbean Islands, including devastating wind damage and flooding across Puerto Rico. Elsewhere, the western North Pacific, South Indian, and Australian basins were all particularly quiet.

Precipitation over global land areas in 2017 was clearly above the long-term average. Among noteworthy regional precipitation records in 2017, Russia reported its second wettest year on record (after 2013) and Norway experienced its sixth wettest year since records began in 1900. Across India, heavy rain and flood-related incidents during the monsoon season claimed around 800 lives. In August and September, above-normal precipitation triggered the most devastating floods in more than a decade in the Venezuelan states of Bolivar and Delta Amacuro. In Nigeria, heavy rain during August and September caused the Niger and Benue Rivers to overflow, bringing floods that displaced more than 100 000 people.

Global fire activity was the lowest since at least 2003; however, high activity occurred in parts of North America, South America, and Europe, with an unusually long season in Spain and Portugal, which had their second and third driest years on record, respectively. Devastating fires impacted British Columbia, destroying 1.2 million hectares of timber, bush, and grassland, due in part to the region’s driest summer on record. In the United States, an extreme western wildfire season burned over 4 million hectares; the total costs of $18 billion tripled the previous U.S. annual wildfire cost record set in 1991.